
Executing explicitly represented protocols
Joaquim Freire

Dept. Information Sciences and Technologies of ISCTE
Av. das Forças Armadas

Edifício ISCTE, 1600, Lisboa, Portugal
Joaquim.Freire@inst-informatica.pt

Luis Botelho
Dept. Information Sciences and Technologies of ISCTE

Av. das Forças Armadas
Edifício ISCTE, 1600 Lisboa, Portugal

Luis.Botelho@iscte.pt

ABSTRACT
This paper describes an approach that enables agents to execute
any interaction protocol that can be expressed in the proposed
XML representation. Therefore, agents will be capable of
executing any protocol representation received in run-time. In
our approach, explicitly represented protocols are converted in an
agent internal structure more suitable for being processed than
XML. The internal representation of the protocol is converted to a
set of production rules that control the behaviour of the agent
according to the protocol. The used XML representation, which
closely mirrors AUML protocol diagrams, is defined by an XML
Schema.
 The proposal defines a protocol independent interface between
the agent private decision processes and the protocol execution
process through which the agent can inform the protocol
execution process of its decisions regarding protocol alternative
courses of action.

Workshop Topics and Area Keywords
Agent communication: protocols

Keywords
Interaction protocols; Protocol explicit representation; Protocol
execution; Open multi-agent systems

1. INTRODUCTION
One key issue in open agent systems such as the Agentcities
network [14] is the agent ability to participate in interactions
following previously unpredicted conversation patterns. If the
agents in an agent society have the capability to follow any
protocol, the society becomes much more flexible and intelligent
than if the agents could only follow a fixed number of previously
known interaction protocols.
However, currently existing agents are capable of executing only
a fixed predefined set of known protocols because interaction
protocols are implicitly embedded in the agent code, as is the case
in [3][11], and also in Jade [2] and FIPA-OS [10] agents. The way
to circumvent this limitation is to build the agents on top of a
generic mechanism capable of executing explicitly represented
interaction protocols. This paper contributes to this endeavour by
(i) presenting an approach to explicitly represent interaction
protocols, (ii) providing a general-purpose mechanism that

executes the represented protocols, and (iii) proposing an
interface between the agent internal decision process and the
protocol execution mechanism.
Given this mechanism, agent interaction goes as follows. The
agent receives a message initiating a specific protocol. If the agent
has already loaded the specified protocol, it may execute it.
Otherwise, the agent retrieves the specified interaction protocol
from its protocol database, loads it and may decide to execute it.
If the specified protocol does not exist in the agent protocol
database, the agent will ask a protocol server agent to send it the
representation of the protocol and may decide to execute it. Then
it stores the protocol for future use.
Section 2 describes the presented approach and section 3 presents
conclusions and directions for future investigation.

2. PROTOCOL REPRESENTATION AND
EXECUTION
Protocols are explicitly represented in XML [12] following a
proposed XML Schema [13]. When the agent receives a message
specifying a specific protocol, the agent converts the XML
representation of the protocol into an internal Java object. Then, it
converts the generated Java object into a set of production rules
that can be used to control the agent behaviour according to the
specified protocol. These rules representing the operational aspect
of the protocol interact with the agent internal decision processes
through a proposed interface.

2.1 Protocol representation
In our proposal, interaction protocols are represented in XML,
following its graphical description in AUML (Agent Unified
Modelling Language) [1], which has often been used for protocol
description, for instance in the FIPA Specifications [6]. Since
AUML is a graphical language, it is not practical for
computational processing hence the use of XML.
We have chosen XML because there are tools that easily convert
XML documents into programming language structures and assist
editing XML documents, and because it is programming
language-neutral.
Figure 1 depicts the AUML specification of a simple interaction
protocol called FIPA-Request. FIPA-request has two roles: the
Initiator, which initiates the protocol, and the Participant, which
responds to the initial message. For each role, the protocol
specifies the actions it may perform in each circumstance. For
instance, in the initial state, when the Participant receives the
request message, it may reply using the not-understood message,
or the refuse message, or the agree message. If the Participant
agrees, that is, if it chooses to send the agree message, the
protocol state becomes the agreed state. In the agreed state, the
Participant may send the failure message, the inform-done
message, or the inform-ref message. The specification of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

mailto:Joaquim.Freire@inst-informatica.pt
mailto:Luis.Botelho@iscte.pt

protocol says nothing about the agent internal decision processes
that lead the agent to choose one of the several possible
alternatives in each protocol state.

Figure 1. FIPA-Request Protocol

<schema>
 <complexType name = "Protocol">
 <all>
 <element name = "name" type = "string" />
 <element name = "role_spec" type = "ProtocolRoleSpec"
 minOccurs = "2" maxOccurs = "unbounded"/>
 </all>
 </complexType>
 <complexType name = "ProtocolRoleSpec">
 <all>
 <element name = "role" type = "string"/>
 <element name = "condition_action"
 type = "ConditionAction"
 minOccurs = "1" maxOccurs = "unbounded"/>
 </all>
 </complexType>
 <complexType name = "ConditionAction">
 <sequence>
 <element name = "condition" type = "Propositon"/>
 <element name = "action" type = "ActionTerm"/>
 </sequence>
 </complexType>
</schema>

Figure 2. Protocol XML Schema
In our proposal, the XML Schema used to define the XML
protocol representation is composed by the protocol name and by
a set of protocol specifications, one for each role. Each role
protocol specification is a set of condition-action pairs (Figure 2).

Figure 3 shows the first condition-action pair of the specification
pertaining to the participant role of the FIPA-request protocol.
<ConditionAction>
 <condition>
 <AtomicProposition>
 <received> request </received>
 </AtomicProposition>
 </condition>
 <action>
 <ActionAlternative>
 <SimpleAction>
 <ActionName> not-understood </ActionName>
 </SimpleAction>
 <SimpleAction>
 <ActionName> refuse </ActionName>
 </SimpleAction>
 <ActionSequence>
 <SimpleAction>
 <ActionName> agree </ActionName>
 </SimpleAction>
 <SimpleAction>
 <ActionName>assert</ActionName>
 <argument> agreed_state </argument>
 </SimpleAction>
 </ActionSequence>
 </ActionAlternative>
 </action>
</ConditionAction>

Figure 3. XML Representation of part of the FIPA-Request
protocol

We used Castor [4] to create Java classes from XML Schemas. A
possible alternative to using XML would be DAML-S [5].
However, in order to use the existing tools that convert XML to
Java, we would need the XML Schema (or the DTD) for
DAML-S, which is not available. Besides, the DAML project
acknowledges the fact that it is not yet clear how to represent
interaction protocols using DAML-S. Finally, the main point of
the paper is not the concrete syntax for representing protocols.
The main point is the process by which explicitly represented
protocols are converted into executable code.
Another possible alternative would be XMI [9] because the
AUML representation of interaction protocols is very similar to
UML sequence diagrams. However, AUML is not exactly the
same as UML, therefore we would have to adapt XMI.

2.2 From protocol representation to agent
control
The idea is to dynamically generate executable code that causes
the agent to comply with the desired protocol. Production rules
are a suitable candidate because they can easily represent the part
of the selected protocol pertaining to each involved agent, and
because they can be created and executed in run-time.
The algorithm that translates the relevant part of the protocol to a
set of rules is straightforward: the condition from the protocol
condition-action pair is mapped into the rule condition, and the
action from the protocol condition-action pair is mapped into the
rule action. Even though the basic idea is simple, some details are
worth noting.

In software engineering terms, interaction protocols are re-entrant
control structures. This means that the same protocol may be
governing different simultaneous agent interactions. The same
agent may be involved in an instance of the FIPA-request
protocol with agent A, and in another instance of the same
protocol with agent B. However, the concrete conditions and
actions pertaining to the first instance cannot be confused with
those of the second instance. In order to circumvent this problem,
the rules generated from the protocol explicit representation
mention the protocol instance so that they may be used in
different instances of the same conversation-pattern.
Another important aspect is that the rules generated from the
protocol representation must ensure that the alternative courses of
action pertaining to a given choice point in the protocol are not
possibilities in a different choice point in the protocol. The
alternatives available in choice point cp1 in the FIPA-Request
protocol are not-understood, refuse, and agree, whereas the
alternatives in choice point cp2 are failure, inform-ref and
inform-done. Moreover, the alternatives in cp2 are available to the
agent only if it chooses the agree alternative in choice point cp1.
In order to deal with this problem, we had to use the notions of
protocol state and protocol state transition in the protocol
representation.
Each set of alternative courses of action is associated to a
particular protocol state. Some alternative courses of action
explicitly cause state transitions in the protocol.
In terms of production rules, the conditions of rules representing
alternatives pertaining to a certain protocol state explicitly
mention the protocol-state, which is represented by a proposition,
using predicate protocol_state/2. The action-part of rules that
cause protocol state transitions, explicitly remove the current
protocol state and assert a new protocol state.
The following rule shows how the protocol-state is explicitly
mentioned in the rule conditions and also how it is changed in the
action part of the rule.
If protocol_instance(fipa-request,

?ProtocolInstanceID) and
protocol_state(?ProtocolInstanceID,
?PState) and
selected_action(?ProtocolInstanceID,
initial_state, agree(?Sender,
?Receiver, ?Content, ?ConverstionID))

Then agree(?Sender, ?Receiver, ?Content,
?ConversationID),
retract(protocol_state(?ProtocolInstanc
eID, ?PState))
assert(protocol_state(?ProtocolInstance
ID, agreed_state))

The above rule says that if an agent is executing the FIPA-request
protocol in a given state, and it has decided to agree with the
received request, then it sends the agree message and the state of
the protocol changes to agreed-state. Quotation marks in the rule
introduce variables.
The most difficult aspect of the translation algorithm is due to the
need of generating specific rules from an abstract protocol, which
does not represent the specific messages involved. In the case of
the FIPA-request, the protocol specification (Figure 1) does not
represent the complete content of the request, not-understood,
refuse, agree, failure, inform-ref and inform-done messages

involved. However the agent control rules deal with specific
messages. For instance, the rules generated from the protocol
representation must specify the reasons and the conditions that
must be sent in the contents of the not-understood, refuse, failure
and agree messages involved. Those reasons and conditions
cannot be contained in the protocol specification just because they
can only be determined by specific agents in the specific
occasions in which the protocol is being executed.
The following rule shows how protocol abstract specifications of
received and sent messages must be mapped into fully detailed
messages.
If protocol_instance(fipa-request,

?ProtocolInstanceID) and
protocol_state(?ProtocolInstanceID,
initial_state) and
received(?ProtocolInstanceID,
request(?Initr, ?Particip, ?Action,
?ConvID)) and not
alternative_actions(?ProtocolInstanceID
, initial_state, _)

Then

 assert(alternative_actions(?ProtocolIns
tanceID, initial_state,
[agree(?Particip, ?Initr, (?Action,
?Condition), ?ConvID),
not-undertsood(?Particip, ?Initr,
(?Action, ?Reason1), ?ConvID),
refuse(?Particip, ?Initr, (?Action,
?Reason2), ?ConvID)]))

The above rule says that if the FIPA-request protocol is being
used, and its internal state is the initial state, and the received
message is <initiator, request(participant, action)>, then the
participant will have three available alternative courses of action:
agree, not-understood and refuse. The contents of all these
alternatives contain some unspecified slots. agree contains an
unspecified condition, not-understood and refuse contain
unspecified reasons.
When the Participant selects one of the alternative actions it fully
instantiates the unfilled slots in the choice. For instance, if the
Participant agent chooses to agree, it must instantiate the
condition part of the message content.
Since our software is being developed in Java, we have chosen
the JESS language (Java Expert System Shell) [7] to implement
the production rules that represent the relevant part of the
protocol.

2.3 Interface between the protocol and the
agent decision processes
Protocols specify that, in given protocol states, the agent has a set
of available alternative courses of action but it does not specify
the agent internal decision process enabling it to choose amongst
the possible alternatives. It is necessary to define a protocol
independent interface between the protocol and the agent decision
processes. This interface must allow agent designers to create
decision processes capable of interacting with the protocol
execution process. On one hand, the interface must allow the
protocol execution process to inform the agent internal decision
processes of the currently available alternative courses of action.
On the other hand, the agent internal decision processes can

inform the protocol execution process of which alternative course
of action was chosen.
The most important aspects of the interface between the protocol
execution process and the agent internal decision processes are
the predicate alternative_actions/3 and the action
choose_alternative/3. Through the predicate
alternative_actions/3, the protocol execution process informs the
agent internal decision processes of the available alternative
courses of action. choose_alternative/3 is an action used by the
agent internal decision process to inform the protocol execution
process of the decision regarding the selected alternative course of
action.
alternative_actions(ProtocolInstanceID,
ProtocolState, AlternativeActions): in state
ProtocolState of the protocol ProtocolInstanceID, the agent must
choose amongst the alternative actions contained in the set
AlternativeActions.
choose_alternative(ProtocolInstanceID,
ProtocolSate, Action): the agent internal decision
process informs the protocol execution process that the action
Action has been chosen in the state ProtocolState of the protocol
ProtocolInstanceID. When this action is executed, the proposition
alternative_actions(ProtocolInstanceID,
ProtocolState, AlternativeActions) is removed
and the proposition
chosen_alternative(ProtocolInstanceID,
ProtocolState, Action) is created. This way, the rules
that control the protocol execution will know that the choice point
has been overcome by an agent decision.

3. CONCLUSIONS AND FUTURE WORK
Although interaction protocols based agents are not the most
sophisticated agents, they are an easy approach to agent
engineering. The approach presented in this paper greatly expands
the protocol approach because it enables the agent to understand
and follow any protocol that can be written in the selected
formalism. Of course this does not lead to fully autonomous
agents such as those capable of planning their course of action.
Even though the protocol based approach to agent engineering is
not the most sophisticated one, it is not less true that higher-level
intelligence may emerge out of the social interaction of relatively
simple agents [8]. Our approach contributes for broadening the
range and complexity of interactions in an agent society.
In the proposed approach, the semantics of the protocol is
implicitly represented by the production rules generated from the
protocol representation. However, some doubts may arise with
respect to the semantics of the messages in the protocol. In the
current state of our work, it is assumed that the agent knows the
semantics of those messages. In the case of FIPA ACL, the
semantics associated with a specific message or communicative
act are defined externally by FIPA. An interesting possibility
would be to use a commonly accepted way of specifying the
semantics of communicative acts, in order to decouple agents
from specific communication languages.
Two other alleys of future investigation are the autonomous
dynamic creation of new more complex protocols from simpler
existing ones; and the creation of decision mechanisms to allow
the agents to negotiate the protocol to be used.

4. ACKNOWLEDGEMENTS
The research described in this paper is partly supported by the EC
project Agentcities.RTD, reference IST-2000-28385, and partly
by UNIDE/ISCTE. The opinions expressed in this paper are those
of the authors and are not necessarily those of the
Agentcities.RTD partners.

5. REFERENCES
[1] Bauer, B.; Müller, J.P.; and Odell, J. Agent UML: A

Formalism for Specifying Multiagent Interaction. In Agent-
Oriented Software Engineering, Paolo Ciancarini and
Michael Wooldridge eds., Springer, Berlin, 2001.

[2] Bellifemine, F.; Poggi, A.; and Rimassa, G. JADE - A FIPA-
compliant agent framework". CSELT internal technical
report, partially available in Proc. of the Fourth International
Conference and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agent Technology , 1999

[3] Botelho, L.M. A Control Structure for Agent Interaction". In
Proceedings of the IEEE Intelligent Vehicle Symposium .
2000

[4] Castor Software. http://castor.exolab.org. 2002

[5] DARPA Agent Markup Language. DAML-S 0.6 Draft
Release. http://www.daml.org/services/daml-s/2001

[6] Foundation for Intelligent Physical Agents. FIPA Interaction
Protocol Library Specification. Document XC00025E.
http://www.fipa.org. 2001

[7] Friedman-Hill, E.J. Jess, The Expert System Shell for the
Java Platform. Distributed Computing Systems, Sandia
National Laboratories, Livermore, CA. Technical Report
SAND98-8206. http://herzberg.ca.sandia.gov/jess/. 2002

[8] Minsky, M, The Society of Mind. Simon and Shuster, N.Y.
1985

[9] Object Management Group. OMG XML Metadata
Interchange (XMI) Specification. Version 1.2. Document
formal/02-01-01.http://www.omg.org/cgi-
bin/doc?formal/2002-01-01. 2002

[10] Poslad, S.; Buckle, P.; and Hadingham, R. The FIPA-OS
agent platform: Open Source for Open Standards. In Proc. of
the Fifth International Conference and Exhibition on The
Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM2000). 2000

[11] Singh, M.P. Developing formal specifications to coordinate
heterogeneous autonomous agents. In Proc. of the
International Conference of MultiAgent Systems . 1998

[12] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Second Edition
http://www.w3.org/TR/2000/REC-xml-20001006). 2000.

[13] World Wide Web Consortium. XML Schema Part 0: Primer.
http://www.w3.org/TR/xmlschema-0/ 2001.

[14] Willmott, S.; Dale, J.; Burg, B.; Charlton, P; and O'Brien, P.
Agentcities: a worldwide open agent network”. Agentlink
News. 8:13-15, 2001

	INTRODUCTION
	PROTOCOL REPRESENTATION AND EXECUTION
	Protocol representation
	From protocol representation to agent control
	Interface between the protocol and the agent decision processes

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

