
Software Image for Learning by Observation

Paulo Costa1 and Luis Botelho1

Instituto de Telecomunicações/ISCTE-Instituto Universitario de Lisboa
Lisbon, Portugal.

paulo.costa@iscte.pt; luis.botelho@iscte.pt

Abstract. As it is the case in human societies, software agents could
also use learning by observation as an important method of knowledge
transference between experts and apprentices even if they have differ-
ent knowledge representations. However, observation requires that agents
and the actions they perform be visible. In this paper, we propose the
novel notion of software image that allows software agents, as well as their
actions, to become visible to other agents. The software image was de-
signed to accomplish two purposes: allow agents to locate similar experts
to observe and provide training examples for the learning by observation
algorithm.

Keywords: Software agents, expert agent, software image, learning by
observation, learning architecture

1 Introduction

The ability of software agents of learning from each other opens a new perspective
on agent development. In the software world it would seem that such effect would
easily be achieved if the expert agent would directly convey knowledge to the
apprentice. However this would only work if agents share a common knowledge
representation.

The PhD research reported on this paper proposes a solution through which
software agents may learn by observation, even without a common knowledge
representation method. The proposed agent architecture was inspired in superior
mammal learning by observation.

Learning by observation, one of the most powerful socialisation and knowl-
edge acquisition mechanisms [14, 3], requires the ability to see. Unfortunately,
software agents cannot see each other hence they cannot learn by observation.
This paper presents an innovative agent architecture with software image that
allows agents to see each other and hence learn by observation. However, the
paper is focused only on the agent software image; not on the learning process.

In superior mammals, learning by observation requires an initial identifica-
tion of similar entities to observe [3]. In this initial stage, the individual must
recognize similar ones from which to learn. Similar entities share similar struc-
tures and capabilities and are able to learn by observing each other’s behaviours.
The proposed agent architecture with software image also provides agents with
recognition capabilities.



2

After recognizing a similar expert, apprentices observe them while doing some
task and learn how to perform it. In this case the software provides training
examples that can be used by apprentices’ learning by observation algorithms.

Machado [11] describes the software image as a mean to provide software
agents with a visible representation of their bodies and actions. The concept of
software image (SwI) used in this research extends her work with the capacity
to store the agent’s perception and past events in addition to its visual image.

Superior mammals use vision sensors to observe the expert’s bodies and their
actions and learn from those observations, but although advances in computer
vision enable computers to have vision systems similar to humans, a simpler
approach was used for the software image - meta-data. Apprentices use special-
ized sensors to extract meta-data stored on the expert agent software image and
learn new abilities.

In addition to the described enhancements to the software image definition,
we have built the software image toolkit (SIT), which allows creating agents
with software image. The toolkit is domain independent and contains all the
required tools to generate and update the agent’s software image with minimal
intervention from the agent developer.

The next section presents a survey on research on learning by observation.
Section 3 presents a formal representation of the approach proposed in our re-
search. Section 4 presents the conceptual view of the software image. On Sect. 5
we briefly describe the software image toolkit. Section 6 demonstrates the appli-
cation of the software image. On Sect. 7 we show a performance diagnostic that
lend support to our design choices for the software image matching algorithm.
Section 8 presents the acknowledgements. Section 9 terminates with conclusions
and future work.

2 Related Work

Learning is an essential characteristic of intelligent beings. A computer program
is able to learn if its performance on a set of tasks improves with experience [12].
Learning algorithms can be organized in two types: supervised learning and
unsupervised learning.

Supervised learning creates mappings between inputs and outputs, whose
correct values are provided by a supervisor. Training sequences, provided by the
supervisor, are used as basis for optimization. Unsupervised learning determines
how a dataset is organized. These algorithms try to find regularities in the input
data to extract knowledge from them [1].

Several authors [2, 4] define learning by observation as a subset of supervised
learning, where policies are generated by observing, retaining and replicating
the behaviour executed by an expert. The capacity to observe and imitate the
movements of others is among the least common and most complex forms of
learning [13].

Learning by observation can be explained under the human and superior an-
imals social interaction mechanisms. Animals and humans take benefit from the



3

experiences of others by learning what they observe from them. Bandura [3] em-
phasizes this aspect on his social learning theory. According to Dautenhahn [10],
the social intelligence hypothesis claims that some intellectual capacities evolve
out of a social domain.

As Argall and her colleagues describe in their survey [2], implementations of
learning by observation algorithms are usually related to robotics. Robot agents
allow a more natural interaction with humans, making it easier to use human
demonstrators as experts. Robot agents also have the advantage of being able
to see each other, when provided with proper vision sensors. Software agents do
not have this capacity, making it impossible for them to identify similar software
agents from which to learn. Additionally, software agents can only observe the
effects of the actions performed in the world. They cannot observe the action
being executed by another agent.

Observing an expert software agent performing its actions has advantages
when learning actions that change internal features in the agent, or whenever
its effects are not visible in the environment (e.g. an agent becomes afraid each
time it passes near a red object, learning a communication protocol), when the
same effects could be achieved by different alternative actions but using one of
them is clearly better than using others (e.g. the use of a set of sums instead of a
simpler multiplication), and also in situations in which the agent must perform
actions whose effects it doesnt know before hand.

Machado [11] proposes a solution to this problem. She designed a software
agent architecture with software image, representing the parts of the agent’s
software body with visual appearance. Her proposal is based on Botelho and
Figueiredo’s work [5] on architectural principles for embodied agents.

Our approach builds on Machado’s software image, extending it with the
capacity to store the agent’s perception in addition to its visual image. Our
proposal also stores a limited history of the agent dynamic image in past inter-
actions. This will allow the learning algorithm to rely on more data than if it
were limited to the observed agent instantaneous image.

The agent’s visual image was redesigned to include the agent’s input mecha-
nisms (the sensors) as visible elements. Sensors provide agents with the percep-
tion of their surroundings, which is an important factor for the decisions they
make. The body part matching algorithm proposed by Machado was also ex-
tended to include sensor matching. Matching also becomes the first stage of the
learning by observation algorithm.

3 Formalization and Knowledge Representation

Software agents participating in learning by observation can have one of the
following roles: the expert agent and the apprentice agent. The expert agent
detains the knowledge on how to achieve desired goals. The apprentice agent
learns, through observation, the actions it needs to perform to achieve shared
goals. Both expert and apprentice are visible software agents (VSA), that is,
software agents with software image.



4

Visible software agents follow the conceptual design of an agent: a mechanism
that collects information from the environment and generates a behaviour by
analysing the collected information and reflecting on its internal state [9]. In our
proposal for the software image concept, the agent’s visible appearance follows
the conceptual design of an embodied agent from Brooks [6].

Under Brooks vision, agents are regarded as blocks of problem solving com-
ponents (1), called agent parts (AP). Agent parts may be seen the same way
as living beings parts, with the particularity that each agent part has its own
control mechanism. This kind of design follows Brooks [7] ideas on solving com-
plex problems by breaking them in smaller and simpler problems, solved by each
agent part, avoiding centralized control components.

VSA ≡ {AP1, · · · , APn} . (1)

Six distinct types of elements make out the building blocks of agent parts
(2). They represent the agent’s input mechanisms (sensors S ≡ {S1, · · · , Sm}),
output mechanisms (actuators AC ≡ {AC1, · · · , ACn}) and a set of internal
constituents such as visual attributes V A ≡ {V A1, · · · , V Ap}, internal agent
parts IP ≡ {IP1, · · · , IPq} internal attributes IA ≡ {IA1, · · · , IAr}and the
control mechanism Cm.

AP ≡ {S,AC, V A, IP, IA,Cm} . (2)

Four of those six types of elements are visible, meaning that they have a repre-
sentation on the software image: sensors, actuators, visual attributes and internal
agent parts. Sensors are atomic elements whose purpose is to feed the agent part
with information from the environment. Actuators represent the array of atomic
operations, or actions a, the part is able to perform (ACi ≡ {a1, · · · , an}). Vi-
sual attributes are atomic elements that represent the types of visual messages
that an agent is able to provide (e.g. a colour, an emotion). Internal agent parts
represent functionality blocks inside the agent part. They are made out of the
same elements as agent parts, with the peculiarity of being under an agent part
instead of under the agent.

In each problem addressed in this research, we consider E the collection of
world states, and A (a ∈ A) the collection of all possible actions. Action selection
(AS) is the agent control function. It selects the action the agent will perform
in a given state, AS : E → A. The action selection function is implemented by
the agent part’s condition-action rule engine.

Being NS : (E ×A) → E a function that maps a given state and the action
that is performed in that state into a new state, the state at time t can be
computed from the state at time t− 1 by the function Next : E → E, according
to (3).

et = Next (et−1) = NS (et, AS (et−1)) , where e ∈ E . (3)

Agent parts perceive the environment through their sensors, providing them
a limited view of the current environment state Z (Z ⊆ E). Condition-action



5

rule engines choose the actions the agent parts should take (4). A rule is satisfied,
meaning it is one of the rules that may trigger, if the conjunction of conditions
derives from the union of the parts perception Z and its current internal state
(IS), as described in (5).

Cond1 ∧ Cond2 ∧ · · · ∧ Condm ⇒ a1, · · · , an . (4)

(Z ∪ IS) ` Condition1 ∧ · · · ∧ Conditionm . (5)

Agent goals are represented by the condition G, which represents the set of
states where the agent goal is accomplished. In a typical setting, experts and
apprentices may share different goals and is up to the apprentice to observe
several experts until one of them performs a set of actions that leads to the
apprentices desired goal. To remove the complexity of finding a proper expert
from this research, the original problem is simplified so that experts share the
same goals as apprentices, or, in the worst case, the expert’s goal requires a set
of actions whose intermediate result represents the apprentice’s goal.

4 The Software Image Concept

Learning by observation is only effective when the observed expert and the ap-
prentice share visible structures and capabilities. The initial stage of identifica-
tion of similar experts provides clues for solving correspondence problems that
otherwise could affect the ability to learn [2].

The correspondence problem amounts to establishing the mappings between
expert and apprentice structures, allowing a common representation of agent
perception and actions. The software image provides agents with the ability to
recognize each other and to create embodied mappings between expert and ap-
prentice [2]. Thus, the software image serves two purposes: create and provide
agent representations in the same way as body part representations exist in the
human brain [14], and create and provide representations for the agent’s percep-
tion and the actions it performs. Agent body part representation is provided by
the static image. Agent perception and action representation is provided by the
dynamic image.

The software image is an independent layer of the agent architecture. Our
approach to create agents with software image relies on a set of automated
mechanisms that create domain independent agent representations with minimal
intervention from the agent developer.

As Fig 1 shows, the static image represents the agent’s visible properties
(agent parts, sensors, actuators, visual attributes and internal agent parts). It is
a reflection of the agent’s visible body.

As the UML class diagram in Fig. 1 shows, the visual representation of an
agent, as described in the static image, is made out of agent parts. Each of these
agent parts is on its turn, an aggregate of sensors, actuators, visual attributes
and internal agent parts. Actuators are, on their turn, aggregates of actions.



6

Software

Image

Static

Image

Dynamic

Image

Agent

Part

Sensor

Actuator

Visual

Attribute

Internal

Agent Part

Action

Fig. 1. General representation of the static image

Sensors, actions and visual attributes are atomic, meaning they have no internal
constituents.

In order to make things simpler, atomic elements are represented according
to a shared ontology, which facilitates the identification of similar agents, that
is, agents with shared visible structures and capabilities.

Visual software agents may have other non-visual features, apart from the
ones emphasized by the static image. The control mechanism of an agent part is
an example of one of those features. In our approach for learning by observation,
agents only need to share similar visible features to learn by observation. This
allows learning between agents with different internal features.

Our learning approach uses the information provided by the expert agent’s
dynamic image as a set of training data for learning algorithms (state-action
pairs). As Fig. 2 shows, the dynamic images is a set of snapshots that show
what happened to the expert agent within a limited period of time. Snapshots
are taken each time the agent makes a decision.

Software

Image

Static

Image

Snapshot
Dynamic

Image

Snapshot[]

Sensor

DataPerception

Invoked

Action

Action

Attribute

Visual

Attribute

Fig. 2. General representation of the dynamic image

Each snapshot contains information of the agent’s perception when the deci-
sion was made, the instance values of the agent’s visual attributes and a repre-
sentation of the action instances (as they are invoked in that particular situation)
along with the set of attributes used for the invocations. This information is re-
trieved by a specialized mechanism in the software image and it is stored on the
expert’s software image, constantly updating it. These specialized mechanisms



7

include a sensor that captures the necessary data from the observed agent. The
information stored on the dynamic image makes out the training data (state-
action pairs) required for the learning by observation algorithm.

Unlike visualizations in the physical world, software visualizations can be
stored with all the necessary information to allow playbacks with the same qual-
ity as the original observation. That is, the agent dynamic image comprises
historical information (the stored set of snapshots) because historical informa-
tion gives apprentice agents the ability to observe the expert’s past actions,
perceptions and visual attributes, allowing them to rewind the observation. This
improves the apprentice’s learning curve, since it is possible to review the train-
ing without having to wait for the expert to perform the same actions again.
Historical information consumes a large amount of memory, thus the dynamic
images historical records will only be able to store a limited amount of informa-
tion.

5 The Software Image Toolkit

The software image toolkit (SIT) is a by-product of our research and was de-
signed to facilitate the development of visible software agents. It provides agent
developers with a set of tools to automatically create and update a domain in-
dependent agent software image. As explained in Sect. 4, the agent software
image allows software agents both to identify expert agents with a similar vis-
ible structure and capabilities, from which to learn, and provides the training
set of state-action pairs necessary for the learning algorithm. Using the dynamic
image history, agents may also rewind what they have observed enabling them
to improve the learnt action control rules, if necessary. As Fig. 3 shows, the SIT
provides agent developers with four automated and domain independent mecha-
nisms (software image building mechanism, a dynamic image update mechanism,
a perception mechanism, a static image matching), and a set of interfaces for
the software vision sensor.

<<component>>

Perception Representation

<<component>>
SwI Representation

<<component>>
Dynamic Image Update

<<component>>

SwI Builder

<<component>>

Matching Algorithm

<<component>>

Perception Mechanism

DynamicImage

SoftwareImage

Perception

Perception

StaticImage

SoftwareImage VisibleSoftwareAgent

Software Image

Toolkit

Software vision

Interfaces

Fig. 3. Component view of the software image toolkit



8

Figure 3 also shows that the SIT provides representations for the software
image and agent perception. Aspect oriented programming (AOP) and code in-
trospection are the main technologies behind the SIT tools. They allow minimal
interventions in the software agent code, reflected on the use of code annota-
tions, a special kind of meta-coding, to identify the agent’s main class, agent
part implementation classes, sensor and action methods, visual attributes, sen-
sor implementation classes and actuator implementation classes. All of these
annotations are listened by the SIT mechanisms through aspects. Code intro-
spection is used to gain access to the agent’s code and build its static image. The
building mechanism makes use of the code annotations to identify the agent’s
visual features.

The dynamic image update mechanism listens for calls on annotated action
methods and updates the agent’s dynamic image with a new snapshot each time
the agent takes a decision. The SIT provides each agent with a perception array,
where agent perceptions are stored. The relations between sensors and positions
on the perception array are also stored, to guarantee that sensor updates are
correctly replaced in the perception array. The perception mechanism listens for
calls on annotated sensor methods, updating the agent’s perception array, each
time sensor information is acquired.

The static image matching algorithm compares the static images of two
agents to find out their differences. It is responsible for determining if the appren-
tice and the expert agents share relevant structural elements and capabilities.
Matching happens only in the static image, agent dynamic behaviour is not
involved in this process.

The matching process was inspired in superior mammal recognition of fa-
miliar structures when observing similar entities. The algorithm is a recursive
method, based on tree comparison algorithms. The agent’s static image is re-
garded as the root of a tree whose branches represent the agent parts. In their
turn, agent parts branch into actuators and internal parts. The tree leafs repre-
sent sensors, actions and visual attributes.

From the learning by observation perspective, apprentices can learn from
experts as long as the apprentice is able to map its visible structures with the
expert’s visible structures. To do this mapping, each branch of the agent’s static
image is matched with the branches of the other agent, to find correspondent
leafs in the matched branches. Optimizations in the matching algorithm prevents
matching between different types of branches (e.g. a branch that represents an
agent part can only be matched with branches that represent agent parts), and
allow an immediate return of a no matching branch whenever an unmatched leaf
is found.

The matching algorithm is also optimized to allow apprentices to have extra
parts that do not exist on the expert. If all the experts parts can be matched with
one of the apprentices parts, the apprentice is able to learn from that expert,
even though the apprentice has other body parts that do not exist on the expert.
This is illustrated in e.g. 1.



9

Example 1. Apprentice agent A is made up of parts α, β and ω. Expert agent
E is made up of parts µ and π. If the static image representation of α and µ
is identical to the static image representation of β and π, agent E is similar to
agent A, from the perspective of agent A. This is true even though E does not
have a part corresponding to ω.

The software vision sensor is responsible for gathering information from the
expert’s software image through the interfaces provided by the SIT. In supervised
learning algorithms, agents are presented with a set of labelled training data,
usually state-action pairs, and have to learn an approximation to the function
that produces the same results [2]. In the specific case of learning by observation,
the set of training data is provided by the experts dynamic image.

6 Example of a Visible Software Agent

The following test scenario was developed to test the capabilities of software
agents with software images and to test the SIT mechanisms. In this scenario
the expert agent is presented with a set of even numbers, from two to eight, and
has to decide whether to take the number or discard it.

The expert’s goal is to achieve the number 24 out of the taken numbers,
summing them up, and to print it. Numbers are presented one at a time to the
expert agent. Each time a number is presented a call to the control mechanism
is made, to choose the actions the agent must take.

The scenario’s environment is made out of a random number generator and
a print area. The expert agent, whose static image is represented in Fig. 4, was
developed with the SIT. It is made out of a single part, responsible for recognizing
the numbers, deciding if the number is taken or discarded, and presenting the
number twenty four in the print area.

As Fig. 4 shows, the agent’s single part (AP1) has one sensor that provides
the agent with the ability to recognize numbers from the random number gener-
ator (provider:even number). It has one internal attribute, the storage attribute,
where the taken numbers are stored. The part also has two actuators: the first
one (A1) provides the expert with two actions; take (store(even number) : self )
and discard (reject(even number)); the second one (A2) provides the expert with
the print action (print(stored) : print area).

SI AP1

provider:even_number

store(even_number):self

reject(even_number)

print(stored):print_area

Fig. 4. Representation of the expert’s static image



10

The take action picks up the number provided by the random generator and
adds it to the agent’s internal attribute. The discard action ignores the number
provided by the random generator. The print action prints the number stored
in the storage attribute in the environment’s print area. The part’s rule engine
makes the decision to call these actions depending on a set of condition-action
rules.

An observer agent was specially built to validate the generated expert agent’s
software image. The observer agent makes use of the software vision sensor to
observe the expert agent. It was able to accomplish the following set of tasks:

The first two tasks required the observer agent to find the expert by matching
its own image with the expert’s software image. The first task was accomplished
while the expert was running on the same computational multi-agent platform
as the observer agent. The second task was accomplished while the expert was
not running in the same computational platform as the observer.

The third task required the observer to identify a particular feature on the
expert, its take action. The observer was able to read the expert’s software image
and find the required action.

The fourth task required the observer to acquire a training sequence from the
expert’s dynamic image. The task was accomplished and the observer was pro-
vided with a training sequence that allowed it to realize that when the sequence
{6, 8, 4, 8, 2, 6, 4} is shown, it may take the first three, the fifth and seventh num-
bers, and discard the rest. After this sequence of actions, the print action can
safely be called, which will result in goal achievement.

Feeding the learning by observation algorithm with this single example would
enable an apprentice agent to learn how to perform the same way as the ex-
pert agent, in this specific situation. According to Argall and her colleagues [2],
apprentice performance is limited by the quality and quantity of information
provided by the expert.

In this particular case the problem could be solved with subsequent observa-
tions. After a few observations, it is expected that the apprentice’s response is
able to cover a large set of possible sequences of numbers.

7 Matching Algorithm Performance Tests

Since matching is the initial stage of our learning approach, its performance is
important since it affects the overall performance of learning. Tree comparison
algorithm performance is affected by the number of branches and the depth of
the compared trees. In the matching algorithm, performance is affected by the
number of agent parts, number of visible elements (sensors, actuators, visual
attributes and internal agent parts) and depth of internal agent parts.

Figure 5 shows the results of three tests performed to the matching algo-
rithm. They determine how the number of parts, elements and depth affect the
performance in terms of processor occupation time.

In the first test, we increased the number of agent parts (one at each step,
until reaching twenty one parts) while maintaining the same number of elements



11

(five sensors, five actuators with a single action, five visual attributes and two
internal parts) and the same levels of depth of internal parts (five levels). In the
second test, we increased the number of each kind of element (one of each at each
step until reaching twenty one sensors, actuators with a single action and visual
attributes) maintaining the same number of internal parts (two on each agent
part), the same levels of depth of internal parts (five levels) and agent parts (five
agent parts). In the third test, we increased the levels of depth of internal parts
(one level at each step until a depth of 21 is reached) while maintaining the same
number of elements (as in the first test) and the same number of agent parts
(five agent parts).

Fig. 5. Matching algorithm performance test results

In each test, we have computed the average values of multiple matching
operations (1000 matches) between two identical software images. Comparing
identical agents is the situation that involves the largest number of iterations,
since it is necessary to match all elements with each other to prove both images
are equal. For each matching operation, a new pair of equal software images
was randomly generated, providing a large number of different possibilities. The
random generation algorithm ensures minimal deviation of the non-varying pa-
rameters (depth, number of visible elements or number of agent parts).

Results are presented in two plots to allow a detailed observation of the data
from the first test. The x axis represents the tests progression (the increments of
the number of parts, elements and depth). The y axis represents the average CPU
time, in milliseconds, taken between the beginning and the end of the matching
process. As expected, Fig. 5 shows that increasing the three described factors
causes an increase in processor time, but the effects of the increase in the number
of elements and the levels of internal parts are the most significant. Another
important aspect to take into consideration is the fact that, when the number of
elements and the level of internal parts reach a certain value (increment of 13),



12

new increments of any of those two parameters lead to an exponential growth
of the consumed processor time.

The matching algorithm diagnostic shows that building agents with a large
number of small parts (with a small number of elements and low levels of internal
part depth) is a better choice than building agents with few parts that have lots of
elements or a large depth. These results support the design choice of decomposing
a problem into smaller problems, each one solved by a simpler agent part.

8 Acknowledgements

This paper was submitted to SDIA 2011 - 3rd Doctoral Symposium on Artifi-
cial Intelligence and reports PhD research work for the Doctoral Program on
Information Science and Technology of ISCTE-IUL (University Institute of Lis-
bon). The research is supervised by Professor Luis Botelho, started on Septem-
ber 2009 and is planned to finish on August 2012. It is partially supported
by Fundação para a Ciencia e a Tecnologia through the PhD Grant number
SFRH/BD/44779/2008 and the Associated Laboratory number 12 - Instituto de
Telecomunicações.

9 Conclusions and Future Work

The software image presented in this paper is the result of the first stage of the
PhD research on learning by observation in software agents. The definition of
a learning algorithm for the agent architecture represents the second and final
stage of the research.

Currently, the research has produced a prototype agent architecture for learn-
ing by observation. It integrates the software image with a learning algorithm.
It was also possible to perform tests on learning algorithm approaches. Their
results narrowed the algorithm choice to classification and planning approaches
for learning by observation [2]. A set of by-products was also created throughout
the research, such as the SIT, several test scenarios as the one presented in Sect.
6 and the learning algorithm tests.

Future work consists on the completion of the second stage of the research.
The main decision left to make is the choice of the type of algorithm to use.
A CBR algorithm is one possible alternative. Another alternative is building a
dynamic plan that is updated each time the apprentice observes a new behaviour
on experts. The plan can be turned out into rules and applied to the apprentice’s
control mechanism. It can also be used directly by obtaining the correct path
from the closest match to the apprentice’s perception.

References

1. Alpaydin, E.: Introduction to machine learning. MIT Press, Cambridge Mass.
(2004)



13

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A Survey of Robot Learn-
ing from Demonstration, vol. Robotics and Autonomous Systems, pp. 469–483.
Elsevier (2009)

3. Bandura, A.: Social learning theory. Prentice Hall (1977)
4. Billard, A., Dautenhahn, K.: Experiments in learning by imitation

- grounding and use of communication in robotic agents (1999),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7685

5. Botelho, L.M., Figueiredo, P.: What your body and your living room tell my agent
(2004), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.3795

6. Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6,
3–15 (1990)

7. Brooks, R.A.: Intelligence without reason. pp. 569–595. Morgan Kaufmann (1991)
8. Calinon, S.: Incremental learning of gestures by imitation in a humanoid robot. In:

In Proceedings of the 2007 ACM/IEEE International Conference on Human-Robot
Interaction. pp. 255–262 (2007)

9. Costa, E., Simoes, A.: Inteligencia Artificial. FCA (2008)
10. Dautenhahn, K.: Trying to imitate - a step towards releasing robots from social

isolation. Proceedings of From perception to action conference pp. 290–301 (1994)
11. Machado, J.a.: Imagem Visual do Corpo de Software: Aquisição de Vocabulário por

Observação [Software Body Visual Image: Acquiring Vocabulary by Observation].
Masters degree thesis, ISCTE (2006)

12. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
13. Moore, B.: Avian movement imitation and a new form of mimicry: tracing the

evolution of a complex form of learning. Behaviour 122, 231–263 (1992)
14. Ramachandran, V.S.: The emerging mind: the Reith Lectures 2003. Profile Books

(2003)


