
From DAML-S to Executable Code
Sérgio Gaio

Communicating Intelligent Systems
Group of ADETTI

Av. das Forças Armadas, Edifício
ISCTE, 1600 Lisboa, Portugal

+351217801428

sergio.gaio@iscte.pt

António Lopes
Communicating Intelligent Systems

Group of ADETTI
Av. das Forças Armadas, Edifício

ISCTE, 1600 Lisboa, Portugal
+351217801428

antonio.luis@iscte.pt

Luis Botelho
Communicating Intelligent Systems

Group of ADETTI
Av. das Forças Armadas, Edifício

ISCTE, 1600 Lisboa, Portugal
+351217801428

luis.botelho@iscte.pt

ABSTRACT
This paper analyses the specification of agent control and agent
knowledge in DAML-S and its conversion into executable code.
Instead of the usual XML syntax, we propose a S-Expression
syntax of DAML-S, which facilitates introducing two extensions
in DAML-S specification: concrete definitions of concepts used
in DAML-S service descriptions, which were not defined in the
DAML-S specification; and logic-programming constructs that
may be used in service description. Two approaches are
discussed with respect to the generation of executable code.
Both of them contain a first step in which the DAML-S
service-description is parsed into an appropriate computer
program data structure, called the DAML-S description parse
tree. The first approach converts the DAML-S description parse
tree into source files that must be compiled and linked in order
to create the executable agent. The second approach relies on the
run-time interpretation of the DAML-S description parse tree.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-Aided-
Software-Engineering

General Terms
Algorithms, Design, Languages.
Keywords
Agent Specification, DAML-S and Agent Control

1. INTRODUCTION
The Pagoda of Creation [4][5] is a system, being developed
within the Agentcities project [9], to help users create Personal
Assistants for agent network applications. Personal Assistants
are generated from a library of agent templates. Agent templates
are high-level agent specifications consisting of four sections:
the domain ontology, the agent control section, the decision
knowledge section, and the agent interface definition section.
The domain ontology section describes the entities of the
domain that the agent might have to deal with. The agent control
section specifies the general flow of control of the execution.
The control section contains decision points in which the agent
must select one of a set of alternative courses of action. The
decision knowledge section specifies the knowledge to be used
by the agent in order to select one alternative course of action
among the several specified in each decision point of the control
section. Finally, the agent interface definition section specifies

the interface between the user and the agent, which is based on
the entities described in the domain ontology.
This paper presents the approach taken to represent the control
and knowledge sections of the agent templates.
In [4], we proposed to use a textual form of AUML [8]
diagrams to represent the agent control section, and Prolog to
represent the knowledge section. However two reasons made us
change our mind. First, the Agentcities project decided to use
DAML-S [2] for service description and DAML+OIL for
ontology representation. Secondly, we don't have a standard
convenient textual notation for AUML diagrams – XMI would
have to be modified since it is a textual notation for UML not
AUML. Hence, we have decided to use DAML-S instead of
AUML, to represent both, control and knowledge sections of the
agent template. However, the experience reported in the paper
shows that AUML would probably lead to higher-level
specifications which would possibly constitute an advantage.
In order to use DAML-S in the agent control and knowledge
sections of agent templates, DAML-S had to be extended. First,
some elements of the DAML-S specification were
under-specified. In the DAML-S original specification, the
conditions (i.e., the guards) and the actions of the control
constructs were unconstrained strings. However, the condition
of a control construct must be a proposition or a Boolean
expression (not any string); and the action of a control constraint
must also be an action expression (not any string). Section 2.2
describes our proposal regarding conditions and actions of
control-constructs.
Although very rich in terms of process control constructs (e.g.,
while, if-then-else, split, sequence), DAML-S adopted mainly a
procedure-centred approach to software design. However, there
are other important trends in the software industry, mainly in the
agent engineering, notably the logic-programming paradigm and
the object-oriented paradigm. In this view, we have extended the
DAML-S to allow agent designers to adopt object-oriented and
logic-programming approaches to software development,
besides the procedure-centred and the concurrent paradigms
already accommodated by the DAML-S original specification
(see section 2.3).
Since the current proposal extends DAML-S with conditions
and action descriptions, we have to define the most convenient
way to express those new elements of the specification. First,
although it has been proposed by others [6], mark-up languages
such as XML are not suitable for logic expression representation

– they result in long difficult to read specifications. Secondly,
the Agentcities project adopted the S-Expression syntax for
agent communication. Third, there are already well-known
concise and readable S-Expression representations of logic
propositions and action descriptions. Given the above three
reasons, we decided to propose a S-Expression syntax for the
extended DAML-S. The adopted syntax is inspired in KIF [7]
and FIPA-SL [3] (extended as in [1]) languages (see section
2.1).

2. EXTENDED DAML-S SPECIFICATION
DAML-S is a DAML description language, which is used to
describe the properties and capabilities of Web services, using a
mark-up language. The purpose of DAML-S is to facilitate the
discovery, execution, composition and interoperation of WEB-
based services.
Our approach uses DAML-S language to describe the agents
control section creating a hierarchic structure that corresponds to
the agent internal behaviour. Basically, a DAML-S specification
is composed by 3 major objects: ServiceProfile - which
describes what the service does; ServiceModel – which defines
how the service works; and ServiceGrounding – which describes
how we access the service. We use the class ServiceModel of
DAML-S specifications and the hierarchy of its sub classes (e.g.,
simpleProcess, compositeProcess, If-Then-Else, atomicProcess)
to describe the agent control section. In order to describe the
knowledge section of the agent template, we have extended
DAML-S with the capability to define predicates (see section
2.3).

2.1 S-Expression syntax of DAML-S
A DAML-S description is a set of related instances of DAML-S
service description classes. Here, we briefly describe the
representation of generic objects using the S-Expression syntax.
The basic idea is to represent an object (i.e., an instance of a
certain class), as a functional expression in which the functor is
the name of the class, and the arguments are the names and
values of the attributes of the object.
(If-Then-Else
 :if-condition (< n 10)
 :then (SimpleProcess
 :effect (Print “Small”))
 :else (SimpleProcess
 :effect (Print “Large”)))

The above expression represents an instance of the DAML-S
If-Then-Else class. This class has two mandatory attributes
(if-condition and then), and a facultative attribute (else). The
object described in the above expression has all the class
attributes. The value of the if-condition attribute is the condition
"(< n 10)". The value of the then attribute is an instance of the
DAML-S SimpleProcess class. Finally, the value of the then
attribute is another instance of the SimpleProcess DAML-S
class.
In logic terms, an instance of a class such as the above
description is a term. The values of the object attributes are also
terms. Informally, it is easy to see that the above expression is
the specification of a process that prints the string "Small" if n is
less than 10; otherwise, it prints the string "Large".

2.2 Conditions and actions
Since the conditions and actions appearing in process control
constructs are the values of attributes of the class representing
the control constructs, syntactically they must be terms.
Therefore, we need to represent conditions through Boolean
functional terms. As a result, the conditions of control constructs
have exactly the same structure of FIPA-SL propositions but,
formally, they are represented by functional expressions.
Consequently, we must treat logical connectives, quantifiers and
relational operators as if they were Boolean functional symbols.
As discussed in [1] it is possible to represent object-oriented
specifications using four new operators: instance, value, apply,
and execute. Originally, instance is a relational operator. In this
proposal it has to be a Boolean functional symbol. In the
original proposal, value is a functional symbol therefore it does
not have to be reified. Apply and execute are action operators
therefore they are not used in the conditions of control
constructs.

(and (> (value employee salary) 1000) (<
(value employee salary) 2000))

The above expression is a functional term representing the
condition "the salary of the employee is between 1000 and 2000
Euros (European Union Currency)". (value Object Attribute) is a
functional term representing the value of the specified attribute
of the specified object. In the above case, it represents the salary
of a specific employee.
In this proposal, action descriptions are represented by SL action
designators, which have exactly the same structure as functional
expressions. Besides application-dependent actions defined by
the agent designer, we propose some domain independent action
operators: assign, print, read, apply and execute. The last two
were introduced in [1].

(sequence (simpleProcess :effect (assign n
(+ n 1))) (simpleProcess :effect (apply
(nth n messages) sendItself (sequence
receiver))))

The above expression is a sequence of two actions. First, the
value of n is increased. Then the method sendItself is applied to
the nth element of the list messages (which is a message) taking
the receiver as an argument. The ontology of the domain
(domain ontology section of the agent template) must specify the
class Message, which, among other things, has the method
sendItself taking the receiver as an argument. Notice that,
although the method sendItself takes only one argument (the
receiver of the message), the general specification of the apply
operator is composed of the object to which the method is
applied, the name of the method to be applied and a sequence of
the arguments to be passed to the method.

2.3 Predicate definition and use
With the extended DAML-S language, it is possible to describe
processes that define invocable predicates. This is the way we
describe the knowledge section of the agent template. This can
be done through the class PredicateDefinition. It allows creating
a predicate with several arguments and a set of clauses
representing facts and rules. An example will be explained in
section 2.4.

In order to use predicates in the agent control structure, it is
necessary to be capable of accessing all possible solutions of the
predicate. Therefore, we decided to extend this DAML-S
language with a mechanism that allows iterating through all
possible solutions of a predicate invocation.
Three process control constructs were created to fulfil this
objective: next_solution, init_iterator and number_of_solutions.
next_solution - returns true if it is possible to get a solution,
and false otherwise. As a side effect, another solution of the
predicate is provided, that is, the variables used in the interface
with the predicate are instantiated with new values.

(next_solution
 :solution_generator <predicate
invocation>)

next_solution generates the next solution of a pre-initialised
predicate. This initialisation is made through the use of the
init_iterator operator:

(init_iterator
 :solution_generator <predicate
invocation>)

number_of_solutions – returns an Integer representing the
number of solutions of an invocable predicate

(number_of_solutions
 :solution_generator <predicate
invocation>)

2.4 Specification Example
In this section a few examples will be given to explain the
definition of predicates using the extended DAML-S. First, we
will present a predicate definition with only a few facts, using
the PredicateDefinition class.
Figure 1 represents an instance of the extended DAML-S class
PredicateDefinition, contained in the knowledge section of the
agent template, that defines an invocable predicate named pub
with two arguments: pubName and city, both of type string. The
value of parameter instantiation in both of those arguments is
any, which means that they can be instantiated or not
instantiated when they are passed on to the predicate.

(PredicateDefinition
 :name “pub”
 :invocable “True”
 :arguments (sequence
 (parameter
 :name pubName
 :restrictedTo string
 :instantiation any)
 (parameter
 :name city
 :restrictedTo string
 :instantiation any)
)
 :clauses (set
 (pub “Charlie Shots” “Lisbon”)
 (pub “Blue Lizard” “Lausanne”)))

Figure 1 - "pub" Predicate Definition
This definition works more or less as a table in a relational
database. In this case, it defines two instances of the predicate:

one pub is named “Charlie Shots” and is located in Lisbon; the
other is the famous “Blue Lizard” in Lausanne. It is worth
noting that the data types and classes used in the definition must
be specified in the domain ontology section of the agent
template or else they must be pre defined types such as “string”.

(PredicateDefinition
 :name "LisbonNightPlace"
 :invocable "True"
 :arguments
 (parameter
 :name place
 :restrictedTo string
 :instantiation any)
 :clauses
 (forall ?x (implies (or
 (pub ?x "Lisbon")
 (fadoPlace ?x "Lisbon"))
 (LisbonNightPlace ?x))))

Figure 2 - "LisbonNightPlace" Predicate Definition
Figure 2 represents an instance of the class PredicateDefinition
that describes another predicate, also contained in the
knowledge section of the agent template, referring the pub
predicate defined in Figure 1. In the above description, there is
only one clause defining the predicate LisbonNightPlace. This
clause is expressed in the syntax of the FIPA-SL content
language. The informal reading is “pubs or fado places located
in Lisbon are Lisbon night places”.

 (compositeProcess
 :name “PrintLisbonNightPlaces”
 :participants (set
 (parameter :name place :restrictedTo
string)
)
 :invocable “True”
 :composedOf
 (sequence
 (SimpleProcess :effect (init_iterator
 :solution_generator
 (AtomicProcess
 :name LisbonNightPlace
 :parameter place
)))
 (Repeat-While
 :while-Condition (next_solution
 :solution_generator
 (AtomicProcess
 :name LisbonNightPlace
 :parameter place
))
 :While-Process
 (simpleProcess :effect (print
place))
)))

Figure 3 - "PrintLisbonNightPlaces" Procedure Definition

Figure 3 defines a procedure that uses the predicate
LisbonNightPlace just defined. Since LisbonNightPlace is used
within a procedural process, it must be used with a solution
iterator. This procedure is placed in the control section of the
agent template.

PrintLisbonNightPlaces uses the processes explained earlier:
init_iterator and next_solution. The procedure is a sequence of
two steps. The first step initialises the iterator with the predicate
LisbonNightPlace, using the process init_iterator. The second
step is a while loop that prints all Lisbon night places by using
the process next_solution. Lisbon night places are the multiple
solutions of the predicate LisbonNightPlace.
Since place has not been previously instantiated, it can be used
to receive the predicate solutions. The atomic process print has
also been added to the original DAML-S specification.
It is worth noting that our proposal creates a framework in
which logic or declarative paradigm is integrated with other
paradigms such as the procedure-centred, the object-oriented
and the concurrent models of computation.

3. MAPPING DAML-S INTO COMPUTER
CODE
Using the proposed DAML-S extension, it is possible to
define a complete control section for an agent, which will
then be converted into the control structure of a running
agent. It is also possible to describe the knowledge section
of an agent, by internally defining all the predicates that
the agent will have access to.

This section considers two different approaches for the
generation of the executable agent from the extended
DAML-S specification. Both of them contain a first step
in which the DAML-S service-description is parsed into
an appropriate computer program data structure, called the
DAML-S description parse tree.

Process

name:string
address:string
docRead:string
docUptade:string
docWrite:string

CompositeProcess
invocable: Boolean
computedInput: string
computedOutput: string
computedPrecondition: string
computedEffect: string

ControlConstruct
components: string
currentStatus:(Ready,Ongoin
g, Suspended, Aborted,
Canceled, Completed)

SimpleProcessAtomicProcess

Sequence

ProcessComponent

Repeat-While
whileCondition:Condition

composedOf

*

WhileProcess components

Figure 4 - DAML-S class diagram

The first approach converts the DAML-S description parse tree
into a set of source files that must be compiled and linked in
order to create the executable agent. The second approach relies
on the run-time interpretation of the DAML-S specs parse tree.

We use the tools Lex and Bison, to parse DAML-S. It allows us
to transform the text syntax into C++ objects. In order to do that
we built a class diagram that has all the DAML-S classes
together with the proposed extensions (see section 2). Figure 4
represents a subset of the actual DAML-S class diagram.
After parsing the extended DAML-S descriptions, it is possible
to generate executable code in any language. The pub and
lisbonNightPlace predicates described in section 2.4 can be
converted into Prolog code as showed in Figure 5. Obviously,
the same specification could, as easily, be converted into Java or
C++ code.

pub(‘charlie Shot’,’Lisbon’).
pub(‘Blue Lizard’,’Lausanne’).

lisbonNightPlace(X) :-
 pub(X,’Lisbon’); fadoPlace(X,’Lisbon’).

printLisbonNightPlaces:-
 lisbonNightPlace(X),
 write(X), nl, fail.
printLisbonNightPlaces.

Figure 5 - Example of generated code in Prolog
Instead of generating code that can be compiled and executed,
another approach consists of using DAML-S as an interpreted
programming language. We have decided not to use this last
alternative because it would entail to create a fully implemented
DAML-S interpreter capable of calling executable code from
other programming languages, since there are already several
agent building blocks in other programming languages.

4. CONCLUSIONS AND FUTURE WORK
We have presented an extension of DAML-S with new features
that allow its use for service description following any of the
most used paradigms of software development: the
procedure-centred paradigm, the object-oriented paradigm, the
logic-programming paradigm and the distributed paradigm. We
have also described two alternative approaches to generating
executable programs from extended DAML-S specifications.
Unfortunately, the approach has also an important disadvantage.
We would have liked agent templates to be very high-level agent
specifications. However, the extended DAML-S control
descriptions are as low level as any programming language such
as C++ or Java. Therefore, the next step is to improve the
approach so that higher-level specifications can be used. The
easiest way to go about this is by defining a library of more
complex building blocks. The other possibility is to develop
algorithms that can generate programs from action descriptions
and goal specifications. This more sophisticated approach would
enable totally declarative agent control and knowledge
specifications.
We will evaluate the possibility of using the proposal presented
in this paper as an abstract neutral programming language
capable of generating code in several concrete programming
languages, such as C++, Java, Lisp and Prolog. In order for this
to be possible, it will suffice to develop a set of code generators

from the DAML-S Description Parse Tree to the different
programming languages. The success of this future step will
empower the software development capabilities of R&D teams,
because it allows developing sharable, re-usable software, in
spite of possible constraints regarding the specific programming
language to be used in each project. This step will also enable
furthering and evaluating the DAML-S specification.

5. ACKNOWLEDGEMENTS
The research described in this paper is partly supported by
UNIDE/ISCTE and partly by the EC project Agentcities.RTD,
reference IST-2000-28385. The opinions expressed in this paper
are those of the authors and are not necessarily those of the
Agentcities.RTD partners.

6. REFERENCES
[1] Botelho, L.M.; Antunes, N.; Ebrahim, M.S.; and Ramos,

P.N. “Greeks and Trojans Together”. Proc. of the
Workshop “Ontologies in Agent Systems” of the first Joint
Conference on Autonomous Agents and Multi Agent
Systems (AAMAS2002)

[2] DARPA Agent Markup Language. DAML-S 0.6 Draft
Release. 2001. http://www.daml.org/services/daml-
s/2001/10/

[3] Foundation for Intelligent Physical Agents. FIPA SL
Content Language Specification. Specification Document
XC00008G. 2001

[4] Lopes, A.L.; Gaio, S.; and Botelho, L.M. “Personal access
to a worldwide agent network”. Proc. of the First
International Joint Conference in Autonomous Agents and
Multi-Agent Systems (AAMAS 2002). Forthcoming. 2002

[5] Lopes, A.L.; Gaio, S.; and Botelho, L.M. “The Pagoda of
Creation”. ADETTI Internal Document. http://www.adetti-
linha4.org/papers/

[6] McDermott, D.; and Dou, D. 2002. Representing
Disjunction and Quantifiers in RDF. In Proc. of the
Semantic Web Conference. Forthcoming. 2002

[7] National Committee for Information Technology Standards.
Knowledge Interchange Format: Draft proposed American
National Standards”. Technical Report NCITS.T2/98-004.
1998. http://logic.stanford.edu/kif/dpans.html

[8] Odell, J.J.; Parunak, H.D.; and Bauer, B. Representing
Agent Interaction Protocols in UML. In Paolo Ciancarini
and Michael Wooldridge (eds) Agent-Oriented Software
Engineering. Springer, 2001. pp.121-140

[9] Willmott, S.; Dale, J.; Burg, B.; Charlton, P; and O'Brien,
P. “Agentcities: a worldwide open agent network”.
Agentlink News, 2001, 8:13-1

http://www.daml.org/services/daml-s/2001/10/
http://www.daml.org/services/daml-s/2001/10/
http://logic.stanford.edu/kif/dpans.html

	INTRODUCTION
	EXTENDED DAML-S SPECIFICATION
	S˚Expression syntax of DAML˚S
	Conditions and actions
	Predicate definition and use
	Specification Example

	MAPPING DAML˚S INTO COMPUTER CODE
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

