

$�&RQWURO�6WUXFWXUH�IRU�$JHQW�,QWHUDFWLRQ�
/XtV�0��%RWHOKR�

'HSDUWPHQW�RI�,QIRUPDWLRQ�6FLHQFHV�DQG�7HFKQRORJLHV�RI�,6&7(�
*URXS�RI�,QWHOOLJHQW�6\VWHPV�DQG�7HOHFRPPXQLFDWLRQV�RI�$'(77,�

/LVERQ��3RUWXJDO�
3KRQH��351-21-7903906�)D[��351-21-7903099�

Luis.Botelho@iscte.pt

$EVWUDFW�
7KLV� SDSHU� GHVFULEHV� WKH� LQWHUDFWLRQ� FRQWURO�
VWUXFWXUH� RI� WKH� DJHQWV� RI� D� WUDIILF�PRQLWRULQJ�
PXOWL�DJHQW� V\VWHP�� 7KH� JRDOV� RI� WKH� DJHQW� DUH�
DFTXLUHG� E\� WKUHH� PHFKDQLVPV�� DJHQW� LQQDWH� JRDOV�
�SUH� SURJUDPPHG� LQ� WKH� DJHQW��� WKH� UHFHSWLRQ� RI�
UHTXHVWV� LQ� LQWHU�DJHQW� FRPPXQLFDWLRQ�� DQG�
VXE�JRDOLQJ�� ,Q� FRQWUDVW� ZLWK� WKH�PDLQVWUHDP� YLHZ��
JRDOV� DUH� FRQGLWLRQDO� VWUXFWXUHV� UHSUHVHQWHG� E\�
FRQGLWLRQ�DFWLRQ� SDLUV�� :H� VKRZ� WKDW�
FRQGLWLRQ�DFWLRQ� SDLUV� DUH� VXLWDEOH� IRU� UHSUHVHQWLQJ�
SHUVLVWHQW� FRQGLWLRQHG� JRDOV�� QRQ�SHUVLVWHQW�
FRQGLWLRQHG�JRDOV��SHUVLVWHQW�QRQ�FRQGLWLRQHG�JRDOV��
DQG�QRQ�SHUVLVWHQW�QRQ�FRQGLWLRQHG�JRDOV��
� .QRZOHGJH� LV� UHSUHVHQWHG� LQ� $&/�6/�� WKH� VDPH�
ODQJXDJH� XVHG� IRU� LQWHU�DJHQW� FRPPXQLFDWLRQ�� 7KLV�
RSWLRQ�HDVHV�WKH�SURFHVV�E\�ZKLFK�UHTXHVW�PHVVDJHV�
JHQHUDWH� FRQGLWLRQHG� JRDOV� LQ� WKH� SURFHGXUDO�
PHPRU\�RI�WKH�UHFHLYLQJ�DJHQW���
� 7KH� FRQGLWLRQV� RI� WKH� JRDOV� VWRUHG� LQ� WKH� DJHQW�
SURFHGXUDO� PHPRU\� DUH� HYDOXDWHG� DQG� WKH� JRDOV�
ZKRVH� SUHFRQGLWLRQ� LV� VDWLVILHG� DUH� VFKHGXOHG� IRU�
VDWLVIDFWLRQ�� 6FKHGXOHG� JRDOV� EHFRPH� WKH� LQWHQWLRQV�
RI�WKH�DJHQW��
� $JHQWV� DUH� LPSOHPHQWHG� DV� &� SURJUDPV�� EXW�
JRDOV� DUH� H[SOLFLWO\� UHSUHVHQWHG� LQ� SURFHGXUDO�
PHPRU\�� 7KH� HYDOXDWLRQ� RI� WKH� FRQGLWLRQV� RI� WKH�
JRDOV� UHOLHV� RQ� SURFHGXUDO� DWWDFKPHQW�� (DFK�
SUHGLFDWH��IXQFWLRQ�DQG�DFWLRQ�LV�DWWDFKHG�WR�VSHFLILF�
KDQGOHUV�� ZKLFK� IRUP� WKH� LQWHUIDFH� EHWZHHQ� WKH�
NQRZOHGJH� OHYHO� RI� WKH� DJHQW� DQG� LWV� LQWHUQDO�
SURFHGXUHV�DQG�GDWD�VWUXFWXUHV��

.H\ZRUGV��Traffic Monitoring and Control, System
Architectures

��� ,QWURGXFWLRQ�
This paper describes the internal architecture of the
agents that belong to a multi-agent system
for video-based traffic monitoring called Monitorix
[1][8]. Monitorix has been developed by the Modest

Project, which is a European project of the ACTS
Programme.
 Monitorix is a multi-agent multi-camera system
for video-based traffic monitoring. The system
comprises several cameras placed along a highway.
Each camera is coupled to a set of algorithms for
image segmentation and indexing, called the Video
Kernel (VK). The VK algorithms send image
descriptions to a Proxy agent that delivers them by a
set of agents that analyse them and produce higher
level interpretations and decisions. Besides the
Proxy, the multi-agent system associated to each
camera comprises the LocalSite, the Classifier, the
Behaviour, the Tracker, the Statistics and the
UserAgent.
 The LocalSite maintains mostly static
information about road-configuration surrounding
the site of the camera. The Classifier produces
classifications of the vehicles observed in its
camera. The Behaviour determines the typical
trajectories of each class of vehicles and provides a
quantitative description of the behaviour of each
vehicle observed in its camera. The Tracker
identifies vehicle descriptions in one camera with
vehicle descriptions in the next camera. The
Statistics computes the frequencies of vehicles of
each class and computes a pollution index in its
camera-site. Finally the UserAgent accepts
information requests from the user and consults the
other agents to obtain the desired information.
 Aside from the application agents, the system
also has some other agents that provide application
independent services. The DF (directory facilitator)
provides a yellow pages service. The AMS (Agent
Management System) provides a white pages
service.
 Agents communicate with each other using
FIPA ACL communication language and FIPA SL
content language. ACL is a language for agent
communication based on the speech act theory [7].
SL extends first order logic with action operators,
the usual set of modal operators for beliefs, goals
and intentions, an uncertainty operator, and a
referential operator [2].
 Agent interaction follows a protocol adapted
from [6] called the information-subscription
protocol [1].

3URFHHGLQJV� RI� WKH� ����� ,QWHOOLJHQW� 9HKLFOHV�
&RQIHUHQFH�� WKH� 5LW]�&DUOWRQ� +RWHO��
'HDUERUQ��0,��86$��2FWREHU����������

 In terms of internal agent architecture, we have
taken a hybrid systems approach that integrates a
knowledge based approach with an algorithmic
approach. Each agent is composed of two main
layers plus an interface layer between the other two.
The internal layer (agent kernel) consists of a set of
efficient specialised procedures that manipulate
specialised data structures. The agent kernel is
responsible for the agent tasks (e.g., determining
typical trajectories). The external or social layer
governs the interaction of the agent with other
agents. It interprets and processes received
messages and controls the agent’s behaviour in
terms of its interaction goals. The social layer of the
agent is a particular implementation of a BDI-like
architecture [3][5] using a production system. The
middle layer is an interface between the social layer
(knowledge layer) of the agent and the agent kernel.
This interface relies on a technique called
procedural attachment.
 Section 2 describes the control apparatus
responsible for the interaction of the agent with
other agents. Section 4 presents our view of goals as
motivational conditional structures. We show how
several kinds of goals may be represented by
conditional expressions. In section 4, we show how
ACL/SL is used as a knowledge representation
language for representing the agent’s conditioned
goals by means of action-condition pairs. Section 4
also shows what goals are generated when the agent
receives a message of the request family. Section 5
describes an implementation architecture that
supports the three layers of the agent described
above. Finally, section 6 presents some conclusions,
emphasises the main contributions of the paper and
presents some future developments.

��� ,QWHUDFWLRQ�FRQWURO�
At each point in time, agent interaction is controlled
by its private innate goals plus the goals acquired as
a result of previous interactions with other agents. In
the framework described in this paper, both of these
are conditioned goals represented by production
rules in the agent procedural memory. Rules R1 to
R3 represent examples of conditioned goals of the
Tracker agent in the Monitorix multi-agent system.
5��� ,I�<$JHQW>�SURYLGHV�D�\HOORZ�SDJHV�VHUYLFH�DQG�

,
YH� QRW� UHJLVWHUHG� P\VHOI� ZLWK� <$JHQW>�� WKHQ�
UHJLVWHU�P\VHOI�ZLWK�<$JHQW>�

5��� ,I� <$JHQW>� SURYLGHV� D� YHKLFOH�FODVVLILFDWLRQ�
VHUYLFH� DQG� ,
YH� QRW� VXEVFULEHG� WKH� FODVVHV� RI�
WKH� YHKLFOHV� ZLWK�<$JHQW>U�� WKHQ� VXEVFULEH� WKH�
FODVVHV� RI� QHZO\� REVHUYHG� YHKLFOHV� ZLWK�
<$JHQW>

5��� ,I�,�KDYH�LGHQWLILHG�YHKLFOH�9�LQ�FDPHUD�QXPEHU�
��ZLWK�YHKLFOH�8�LQ�FDPHUD�QXPEHU���DQG�,�KDYH�
QRW�VHQW� WKLV� LGHQWLILFDWLRQ� WR� WKH�&ODVVLILHU� \HW��
WKHQ� WHOO� WKH� &ODVVLILHU� 9� DQG� 8� DUH� WKH� VDPH�
YHKLFOH�

The first two goals (R1 and R2) are innate goals of
the agent. The third goal (R3) resulted of a request
sent by the Classifier agent asking the Tracker to
identify vehicles observed in camera 1 with vehicles
observed in camera 2. Goals may also appear as a
result of the means-ends reasoning of the agent
applied to its previous goals and beliefs.

)LJXUH�����$JHQW�LQWHUDFWLRQ�FRQWURO�
Since the goals of the agent are represented in its
procedural memory as production rules, the
behaviour of the agent is naturally determined by its
procedural memory. The agent control loop
repeatedly checks and processes new messages
possibly updating its procedural memory.
Information messages update the contents of the
agent’s working memory. Accepted requests are
stored as new conditioned goals (i.e., production
rules) in the agent’s procedural memory.
 After having processed new messages, the agent
evaluates the conditions of all conditioned goals
stored in its procedural memory and selects those
actions whose conditions are satisfied. Then, it
chooses a subset of non-conflicting actions from the
set of actions with satisfied conditions and
schedules the chosen set of actions for execution.
The actions scheduled for execution become the
intentions of the agent.
 In the last step of the agent control loop, it
executes all actions scheduled in a given time-span
(Figure 1).

If ��������� 	 � ����
 Then � �
	 � ����

If ��������� 	 � ����� Then � �
	 � �����

���������
�����
�������������!

" ��#���$ %&$ ��#
�('���� ����%)$ ��#

Satisfied
actions

���
�+*)�+�!�+#��+�
,-��#��
" ���/.���%&$ 0�$ � $ %)
1 #���� �,2$,

Preferred
compatible

actions

3 �
4�������� ��� Schedule
(intentions)

3 �
� ���
%5*)���
�
6��
����%)$ ��#

Actions for
execution

�7�8�
*9���
�
1 �!%:$ ��#�,

New goals

;
� ��	
;
� ��	 �

<=����>�$ #�?@���+�/���(
Observations
Information
Messages

Environment

Time
Span

 The described control process assumes the goals
of the agent can be represented as condition-action
pairs. The next section analyses the representation
of several kinds of goals as condition-action pairs.

��� 5HSUHVHQWLQJ�FRQGLWLRQHG�JRDOV�
Goals may be classified according to their
persistence and according to whether or not they are
conditioned by any event or state.
 Non-persistent goals disappear after being
satisfied, whereas persistent goals don’t. Certain
kinds of requests generate non-persistent goals. For
instance, when an agent receives a query from
another agent (sender), it generates the
non-persistent goal of sending the desired reply to
the sender. The goal is non-persistent because, after
the reply has made is way through, the goal of
sending the reply disappears.
 As an example of a persistent goal, consider the
goal generated when the agent receives a request of
sending an alarm message whenever it detects an
accident. If an accident is detected, the agent must
send the alarm message, but the goal does not
disappear. Another alarm message will be sent, shell
another accident occur.
 Conditioned goals are goals dependent on some
condition. UHTXHVW�ZKHQHYHU messages generate
conditioned goals. Non persistent goals don’t depend
on anything. A query generates a non-conditioned
goal.
 In spite of this apparent diversity, all these kinds
of goals may be represented by means of
condition-action pairs. As can be seen in Figure 2, a
non-conditioned goal may be represented by a
condition-action pair in which the condition is true;
whereas a non-persistent goal may be represented
by a condition-action pair in which the last action in
the action part destroys the goal.

*RDO� 5HSUHVHQWDWLRQ�
Persistent goal of doing
action � whenever condition �

 is true.

(A C)

Persistent goal of doing
action � .

(A �������)

Non-persistent goal of doing
action � if condition

�
 is

true.

((
��������
���� �
�����������) �)

Non-persistent goal of doing
action � .

((
��������
���� �
�����������) �������)

)LJXUH�����5HSUHVHQWDWLRQ�RI�FRQGLWLRQHG�JRDOV�
For instance, if the agent has a non-persistent goal
of performing a certain action A in any conditions,
then the condition-action pair that represents the
goal has a condition equal to WUXH and an action
equal to the sequence of A followed by the special
action UP*RDO. When the agent evaluates the
conditions of the rules in its procedural memory, the

action component of this goal is selected (since its
condition is WUXH). When the action part of the goal
is performed, action A gets executed and then
UP*RDO is also executed removing the goal from the
procedural memory. Therefore, the goal will not be
considered again.

��� .QRZOHGJH�UHSUHVHQWDWLRQ�ODQJXDJH�
The agents of the Monitorix system communicate
with each other in ACL (FIPA Agent
Communication Language [4]) with SL contents
(FIPA Semantic Language [4]). SL is an extension
of the language of the first order predicate logic
with the usual modal operators of the BDI-like logic
[3][5].
 Since some of the goals of the agent are
generated as a result of its interaction with other
agents, we have decided to use ACL/SL both for
inter-agent communication and for knowledge
representation.
 Sections 2 and explain how the goals of the
agent may be represented as condition-action rules.
In this section we show how an action condition pair
may be represented in ACL/SL. We also show that
persistent conditioned goals, non-persistent
conditioned goals, persistent non-conditioned goals,
and non-persistent non-conditioned goals may be
generated when the agent receives messages of the
UHTXHVW�family.
 One kind of SL expression is an action condition
pair. We use this expression to represent the
production rules that capture the goals of the agent.
In a SL action-condition pair, the action may be any
agent specific action, any communicative act (i.e.,
sending a message), or a compound action.
Compound actions may be sequences of actions or
action alternatives. The condition part of an
action-condition pair may be arbitrarily complex
propositions of the SL language.
 We start with an example. Let’s see how the
conditioned goal R1 (section 2) is represented in
ACL/SL. �,I� <$JHQW>� SURYLGHV� D� \HOORZ�SDJHV�
VHUYLFH�DQG�,
YH�QRW�UHJLVWHUHG�P\VHOI�ZLWK�<$JHQW>��
WKHQ�UHJLVWHU�P\VHOI�ZLWK�<$JHQW>�.
 The action part of the rule must be changed a
little so that, after the Tracker registers itself with
the agent that provides the yellow-pages service, it
must learn that it is registered already. Therefore,
the action part of the rule must be a sequence of two
actions. The first action is the communicative act
through which the Tracker asks the yellow pages
agent to register its services. This communicative
act is a request sent to the yellow pages agent asking
it to register the Tracker. The second action asserts a
fact in the agent working memory saying that it has
been registered (we assume, for simplification, the
communicative act is a successful act).
 The condition part of the rule is a conjunction
with two atomic propositions: the first of these

states the name of the agent that provides a yellow
pages service; the second atomic proposition states
the Tracker agent is already registered with the
yellow pages agent.

// Action sequence
((squence
 (request
 :sender 7UDFNHU�LGHQWLILHU
 :receiver <agent>
 :content (action <agent>
 (register (df-agent-description
 :name 7UDFNHU�LGHQWLILHU
 :protocols (set
 fipa-request
 information-subscription)
 :ontology (set
 traffic-surveillance)
 :language (set sl)
 :services (set
 (service-description
 :name vid1
 :type vehicle-identification
 :ontology traffic-surveillance
 (service-description
 :name vp1
 :type vehicle-prediction
 :ontology traffic-surveillance))
 :ownership (set adetti-iscte))))
 :language sl0
 :ontology fipa-management
 :protocol fipa-request)
 (assert
 (registered 7UDFNHU�LGHQWLILHU)))
 (and // Condition
 (service-type <agent> yellow-pages)
 (not
 (registered 7UDFNHU�LGHQWLILHU))))

)LJXUH���±�$�FRQGLWLRQHG�JRDO�LQ�$&/�6/�
In the conditioned goal represented in Figure 3, we
use a special device that is not part of the original
syntax of the ACL/SL language: a name between
angle brackets, e.g., <agent>. This is used as a
variable to be instantiated by pattern matching.
 The request family of ACL messages supports
all kinds of goals discussed in section �. In the
remaining of this section, we describe the power of
this message family to create several kinds of goals
in the receiver (see Figure 4).
 When an agent receives UHTXHVW�ZKHQHYHU� or
VXEVFULEH� messages it creates persistent goals.
UHTXHVW�ZKHQHYHU gives rise to conditioned goals,
whereas VXEVFULEH�generates non-conditioned goals.
VXEVFULEH� messages create the persistent goal of
sending an inform message with the objects that
satisfy a given condition (represented by
3URSRVLWLRQ).
 UHTXHVW�ZKHQHYHU and UHTXHVW�ZKHQ messages
generate conditioned goals but whilst
UHTXHVW�ZKHQHYHU generates a persistent conditioned

goal, UHTXHVW�ZKHQ generates a non-persistent
conditioned goal.
 UHTXHVW, TXHU\�UHI� and TXHU\�LI� messages all
create non-persistent, non-conditioned goals. The
goals created by TXHU\�UHI and TXHU\�LI messages are
a special kind of action: sending LQIRUP�messages.
����,(,2��?��

request-whenever (A C)
� �����

(A C)
����,(,2��?��

request-when (A C)
� �����

((sequence A rmGoal) C
����,(,2��?��

subscribe E
� �����

((inform-ref E) true)
����,(,2��?��

request A
� �����

((sequence A rmGoal) true)
����,(,2��?��

query-ref E
� �����

((sequence (inform-ref E) rmGoal) true)
����,(,2��?��

query-if P
� �����

((sequence (inform-if P) rmGoal) true)

)LJXUH���±�*RDOV�FUHDWHG�E\�$&/�UHTXHVWV�

It is worth comparing the table of Figure 4 with the
table represented in Figure 2.

��� ,QWHUQDO�DJHQW�DUFKLWHFWXUH�
Section 2 describes the interaction control structure
of the agents of the Monitorix system. The main
components of that control structure are the
Working Memory, the Procedural Memory and the
Action Schedule (see Figure 1). This section
describes the interaction between the procedural
memory and the working memory and describes the
underlying implementation architecture. The Action
Schedule and the scheduling algorithm lay beyond
the scope of this paper.
 In the first step of the agent control loop, (part
of) the messages received by the agent are
processed. In the scope of the present paper, the
most important message families are information
messages and requests. Requests give rise to
conditioned goals in the agent procedural memory.
Information messages update the contents of the
agent’s Working Memory. Hence, we need a way to
assert new facts to Working Memory.
 The second step of the agent control loop
evaluates the conditions of all conditioned goals
stored in the agent procedural memory. The
conditions of the production rules are compared
with the contents of the agent’s Working Memory to
check whether or not they are satisfied. Therefore,
we need a way to query the contents of working
memory.
 The remaining of this section explains how new
facts are asserted to working memory (as a result of
incoming information messages) and how the

contents of working memory are queried during the
process of evaluating the conditions of the rules
stored in procedural memory.
 Conceptually, working memory is a repository
of facts (represented as atomic formulas) but there is
really no explicit representation of predicates,
functions and actions. Internally, an agent is a C
program that manipulates data structures that may
bear no resemblance whatsoever with predicates,
functions and actions. Therefore, we used
procedural attachment to carry out the evaluation of
the conditions of rules in procedural memory. Each
predicate can be queried or asserted, therefore each
predicate name is attached with two predicate
handlers: one for consulting (evaluating) the
predicate and another one to assert new facts with
the same predicate1.
 The arguments of an atomic formula may be
functional expressions therefore we also need
function handlers to be used to evaluate functional
expressions.
 Similarly, the actions specified in the action
component of conditioned goals are not explicitly
defined in the agent knowledge base. Actions too,
are performed through the execution of associated
action handlers.

)LJXUH���±�$Q�DJHQW�IURP�RXWVLGH�LQ�
 As Figure 5 shows, an agent is seen from the
outside as a knowledge-based system whose
interaction is controlled by a set of production rules
whose conditions are matched against the contents
of the agent’s working memory. However, from the
inside, an agent is a regular program whose main
task is carried out by a special purpose procedure.

1 Actually, each predicate is attached to four predicate handlers.
One is used to assert a new fact with that predicate. The second is
used to create an uncertain instance of the predicate. The third is
used to evaluate atomic formulas with that predicate. Finally, the
fourth is used to evaluate uncertain propositions with the
predicate. We won’t talk about uncertainty here to avoid missing
the main point.

Between the social layer (knowledge level) of the
agent and its internal routines and data structures,
there is an interface (KKI, "Knowledge to kernel
interface") that implements the communication
between them using procedural attachment.
 KKI is composed of three tables that represent
the predicate handlers, the function handlers and the
action handlers respectively (Figure 6).

� ������� ��� ��� ��	 	
� ����� ��
�����
�� � � �
int assert_pred(AgentData *ad, List args)

� ������� ����� � �
	 ��� ������� ��
�����
���� � �
int eval_pred(AgentData *ad, ArgsTuple *args, InstSet *iset)

 ��
������ ��
�����
���� � �
int eval_fun(AgentData *ad, ArgsTuple *args, Term **result)

� ����� ��
�����
���� � �
int perform(AgentData *ad, ActionParameters *params)

)LJXUH���±�KDQGOHU�SURWRW\SHV�
All predicate evaluation handlers have the same set
of parameters and return the same return status
information. The arguments of a predicate
evaluation handler are the agent internal data
structures, the list of the arguments of the predicate
as specified at the knowledge level, and the set of
alternative variable instantiations. A variable
instantiation is a set of variable/value pairs. If all
variables passed as arguments of a predicate take the
values specified in the variable instantiation, the
proposition becomes true.
 Predicate assertion handlers all have the same
arguments and return the same constants in similar
circumstances. The arguments of a predicate
assertion handler are the agent internal data
structures, and the list of the arguments specified for
the predicate in the particular formula considered.
 The arguments of function handlers are the agent
data structures, the set of arguments of the
considered functional expression and a result
parameter to receive the result of the evaluation.
 Finally, the arguments of action handlers are a
set of attribute value pairs. Each attribute represents
the name of the argument and each value is the
parameter itself. Figure 6 represents the prototypes
of the predicate, function and action handlers.

��� &RQFOXVLRQV�
This paper discusses some of the approaches
followed in the development of a video-based traffic
surveillance multi-agent system. In spite of being a
particular application domain, some general lessons
were learnt about agent architecture and knowledge
representation.
 The procedural attachment approach allowed us
to build an efficient agent using specialised
procedures and data structures while preserving the
flexibility and the possibility to explain the
behaviour of the system provided by the knowledge

1 ?��
#�%
�@�8�
#��
�

�����

� #���� � �
��?��
� �!'��
�

�7�
���+�
���������
��%9%&����4�����#�%

Predicate,
function and
action
handlers

3 .�����$ ��� $,2�
�
.��
�����
�����
��, ��#��
����%&� ,(%:�!����%)���
��,

�@��� ��,

IF ��������� 	 � ���
Then � ��	 � ���

based approach used at the social level. From the
outside, the agent interaction is governed by a rule
base and a working memory. From the inside, the
agent tasks are performed by efficient specialised
procedures and data structures. The procedural
attachment approach also allowed us to completely
de-couple the design of the agent interaction from
the design of the problem solver.
 An important contribution of the project is the
view of goals as motivational conditional structures.
Agents don’t have the same goals irrespective of
their current contexts. The use of conditioned goals
allowed us to build agents with context-dependent
goals.
 In spite of the different way we view goals, the
general idea is still a BDI-like architecture since
goals become intentions and intentions become
actions.
 We also found ACL/SL to be suitable both for
inter-agent communication and for knowledge
representation. Using the same language for
communication and representation provides easy
and natural ways to generate new goals from the
interaction and also to interpret received messages
in terms of the meaningful internal structures.
 Finally, the UHTXHVW family of ACL messages
(request, request-when, request-whenever,
query-ref, query-if, and subscribe) is powerful
enough to generate the whole variety of goal types
in the receiving agent: information and actions
goals, persistent and non-persistent goals, and
conditioned and non-conditioned goals.
 Two main developments will deserve our
attention in the near future. One of these problems
relates to the representation and reasoning about
action dependencies. Not all actions with satisfied
pre conditions may be scheduled for execution since
the effects of executing one of them may impair the
pre conditions of the other ones. Besides, the actions
once scheduled may have to be reconsidered
because, if they are not immediately executed the
dynamics of the environment may render them
inappropriate. Maybe one possible way to solve this
problem is to reschedule all actions that were
scheduled but not executed during a certain time
interval.
 The other development will be the development
of a declarative memory for representing more
general and complex knowledge than is currently
possible through the procedural attachment
approach taken so far.

$FNQRZOHGJHPHQWV�
This work was partially supported by the ACTS
project AC 304 and by UNIDE/ISCTE.

��� 5HIHUHQFHV�
[1] Botelho, L.M.; Lopes, R.; Sequeira, M.M.;

Almeida, P.; and Martins, S. 1999. “Inter-agent
communication in a FIPA compliant intelligent
distributed dynamic-information system”. In
Callaos, N; Nada, N; Cherif, A; and Aveledo, M.
(eds) 3URFHHGLQJV� RI� WKH� � � � � ,QWHUQDWLRQDO�
&RQIHUHQFH�RQ�,QIRUPDWLRQ�6\VWHPV�$QDO\VLV�DQG�
6\QWKHVLV� �,6$6���� International Institute of
Informatics and Systemics (IIIS).

[2] Bretier, P.; and Sadek, D. "A rational agent as
the kernel of a cooperative spoken dialogue
system: implementing a logical theory of
interaction". In Müller, J.P; Wooldridge, M.J.;
and Jennings, N.R. (eds) IQWHOOLJHQW�$JHQWV� ,,,� ��
3URFHHGLQJV� RI� WKH� 7KLUG� 7/� :RUNVKRS.
Springer Verlag.

[3] Cohen, P.R.; and Levesque, H. 1990. Intention is
choice with commitment. $UWLILFLDO� ,QWHOOLJHQFH.
42:213-261

[4] Foundation for Intelligent Physical Agents. 1998
FIPA 97 Specification, Version 2.0 Part 2
"Agent Communication Language",
http://www.fipa.org/spec/fipa98.html

[5] Georgeff, M.P. and Rao, A.S. (1995) "The
semantics of intention maintenance for rational
agents", ,-&$,
��� p704-710

[6] D’Inverno, M.;. Kinny, D.; and Luck, M. 1998.
Interaction protocols in Agentis. In Proceedings
of the ICMAS98, p112-119

[7] Searle, J.R. 1969. Speech Acts. Cambridge
University Press, 1969

[8] Trigueiros, M.J.; Botelho, L.M.; Lopes, R.J.;
Nunes, L.M.; Sequeira, M.M.; David, N.;
Almeida, A.P.; Almeida, P.; Vieira, S.; Marques,
G.; Martins, S.; Afonso, R.; Teles, R.;
Figueiredo, P.; and Abreu, B. 2000. “Description
and software implementation of the Camera
Assistant”. Deliverable of the Modest Project (in
preparation)

