

Extending the FIPA ACL Language. From Object Based
Descriptions to Relational Representations

Luís Botelho1 and Pedro Ramos1

1
Department of Information Sciences and Technologies of ISCTE

Av das Forças Armadas, 1600 Lisboa, Portugal
{Luis.Botelho, Pedro.Ramos}@iscte.pt

Abstract. This paper describes a formalism to represent object-descriptions
within inter-agent communication messages and a formalism to express the
relational representation and the data model of those descriptions. A mechanism
for generating the data model and the relational representation of an object from
its object-based description is also proposed. This mechanism is used to support
the enhancement of FIPA ACL inter-agent communication language with three
new communicative acts: present-object, ask-object and subscribe-object. The
paper presents the intentional semantics of present-object and ask-object
messages.

1 Introduction

KQML [6] is the de facto standard in inter-agent communication. However, since
KQML has been criticized due to its poor semantics, FIPA (Foundation for Intelligent
Physical Agents) has recently proposed ACL, a speech act based language [8] as a new
standard for inter-agent communication. ACL [5] includes, among others, some
informative message types (inform, confirm, disconfirm) for which the content must be
a proposition. However, for some applications (mainly, applications based on the
representation of multimedia objects, such as video-based surveillance applications
[4]), the most natural way of conveying information is to use objects, not propositions.
Indeed, in monitoring applications (Figure 1) some agents extract object-descriptions
from observed physical processes and send them to other agents. Such application
domains would benefit from the development of formal methods for communication,
representation and reasoning based on objects rather than on propositions.
 ACL is a recent language whose continuous evolution has been documented in
several versions of the FIPA specifications [4][5]. Here, we present yet another
evolution.
 We propose to extend the FIPA ACL language with three new messages that may
be used by agents to send and to ask for descriptions of objects: present-object,
ask-object, and subscribe-object. present-object is an informative speech act that is

used to present an object to an agent. present-object takes an object as content whereas
the other ACL informative messages take propositions.
 The sender may reasonably expect that the presentation of an object to the receiver
will change its mental state. Upon being presented object obj by means of a
present-object message, an agent is expected to acquire the new belief that obj is an
object. It is also expected that the receiver forms some other beliefs about the class and
the attributes of the object.
 This paper presents a formal approach to deal with the representation of object
descriptions and an automatic mechanism that takes an object description and
computes a set of first order predicate calculus sentences that represents the object and
its correspondent data model. Using this approach it is possible to define the intentional
meaning of the new proposed messages.
 The remaining of the paper is organized as follows. The second section motivates
the work through an example. In the third section, we discuss the formal representation
of object descriptions. The fourth section describes the formal mechanism used to
produce the data model and the relational representation of an object from the object
description. In the fifth section we present the new messages and their intentional
semantics. The sixth section presents conclusions and future work.

2 Motivation

MODEST [2][1] is a European ACTS project whose development goal is to define and
build a video-based intelligent multi-agent system for traffic surveillance (Monitorix).
As previously pointed out in [2], a great deal of inter-agent communication in
Monitorix follows the communication pattern described in Figure 1.

Figure 1 - Reference Model for Monitoring Multi-Agent System

In the class of MAS described in Figure 1, there is a physical process that is observed,
in real-time, by a set of agents (observer agents). These agents extract objective object
descriptions from the physical process and deliver them to the intermediate agents that
build a higher-level relational representation of the observed process. Following an
adequate protocol, an information requester (e.g., an intermediate agent) subscribes

Physical

 Process
Observer

1

Observer Agents Intermediate Agents

Agent 1

Agent 2

Agent 3

User Agents

User Agent 1

User Agent 2
Observer 2

certain information classes with one or more information providers (e.g., observer
agents). Generally, this subscription is done only once during the initial stage of the
agents’ life. The providers repeatedly send instances of the subscribed information
classes to the requesters. Usually (although not always), the information sent by the
providers to the requesters consists of object descriptions. Figure 2 illustrates the kind
of information message sent by one of the observer agents to an intermediate agent. SL
(Semantic Language) [5] is the content language used in the examples given in the
paper.

(a)

(query-ref
 :sender IntermediateAgent-1
 :receiver ObserverAgent-1
 :content
 (any ?x (mobile-object ?x))
 :language SL)

(b)

(inform
 :sender ObserverAgent-1
 :receiver IntermediateAgent-1
 :content (=
 (any ?x (mobile-object ?x))
 (Vehicle
 :vehicle_color red
 :vehicle_position
 (Position :y 1253 :x 34)
 :vehicle_size
 (Size :length 4 :width 2)))
 :language SL)

Figure 2 – Agent interaction in a monitoring multi-agent system

The message depicted in Figure 2(b) has the following reading “one of the entities that
satisfy the condition of being a mobile object is a red vehicle...”.
 We would like that, after having received the message in Figure 2(b), any
intermediate agent would be able to answer questions such as

1) What is the class of the received mobile-object? ; 2) What are the
attributes of a vehicle? 3) What is the position of the red vehicle?

Figure 3 depicts a message used by an agent to ask the position of a red vehicle.

(query-ref :sender i :receiver j
 :content
 (any ?pos (exists ?size
 (mobile-object(Vehicle
 :vehicle_color red
 :vehicle_position ?pos
 :vehicle_size ?size)))))

Figure 3 – What is the position of the red vehicle?

Although it is possible to ask the above question, it would not be practical to do it if the
class of vehicles had many attributes, each one being a composed object itself (as
actually it is the case in the Monitorix system). We would have to use an existential

variable as a place holder for the value of each irrelevant attribute (such as ?size in
Figure 3). While it is feasible (although cumbersome) to ask questions such as question
number 3 above, it is impossible to ask questions number 1 and 2. The class of the
object and the names of its attributes are not explicitly available. We would have to use
domain dependent knowledge to access the class and the names of the attributes of an
object. Instead of using domain-dependent knowledge, we propose a general-purpose
approach. Using the data model described in Figure 4, Intermediate Agent 1 would be
able to answer meta-questions about vehicles in general. Through the first and second
queries of Figure 6, User Agent 1 asks Intermediate Agent 1 "what are the known
classes?" and “what are the attributes of a vehicle?”.

(class vehicle)
(class position)
(class size)
(attribute vehicle
 vehicle_color)
(attribute vehicle
 vehicle_position)
(attribute vehicle
 vehicle_size)

(attribute position position_x)
(attribute position position_y)
(attribute size size_length)
(attribute size size_width)
(class-relation vehicle
 vehicle_position position one)
(class-relation vehicle
 vehicle_size size one)

Figure 4 - Data Model of the Class Vehicle

Abbreviations v: (Vehicle
 :vehicle_color red
 :vehicle_position
 (Position
 :position_y 1253
 :position_x 34)
 :vehicle_size
 (size
 :size_length 4
 :size_width 2))

p:(Position
 :position_y 1253
 :position_x 34)

s: (Size
 :size_length 4
 :size_width 2)

Representations (instance vehicle v)
(instance position p)
(instance size s)
(value v vehicle_color red)
(value v vehicle_position p)

(value v vehicle_size s)
(value p position_x 1253)
(value p position_y 34)
(value s size_length 4)
(value s size_width 2)

Figure 5 - Relational representation of a vehicle

The model is described using the relations class/1, attribute/2 and class-
relation/4. The relation attribute lists the attributes of a class. The relation
class-relation is used when the value domain of a class attribute is another
class. The cardinality of the relation between these two classes (e.g., Size and Vehicle)
is also represented. For example, (class-relation vehicle
vehicle_size size one) means that one instance of a vehicle can be related

(through the attribute vehicle_size) with no more than one instance of size.
Notice that the reverse side of the cardinality can only be determined through the
analysis of a set of vehicles (if we observe two vehicles with the same size, the
following relation would be inferred: (class-relation size vehicle_size
vehicle many)). This kind of inferences is not treated in this paper. In section 4
we present an inference mechanism that automatically produces the descriptions
presented in Figure 4 and Figure 5.
 Given the relational description in Figure 5, an user agent may ask Intermediate
Agent 1 "what is the position of a red vehicle?”, through the third query of Figure 6.
The relational description is expressed with the relations instance/2 and value/3.
In the example of Figure 5 (instance size s) means that s is an instance of the
class size and (value s length 4) means that 4 is the value of the attribute
length in the instance s.

// What classes are there?

 (query-ref
 :sender UserAgent-1
 :receiver IntermediateAgent-1
 :content
 (all ?x (class ?x))
 :language SL)

// What are the attributes of vehicle?

(query-ref
 :sender UserAgent-1
 :receiver IntermediateAgent-1
 :content
 (all ?x
 (attribute vehicle ?x))
 :language SL)

// What is the position of a red vehicle?

(query-ref
 :sender UserAgent-1
 :receiver IntermediateAgent-1
 :content
 (any ?x (exists ?v
 (and
 (instance vehicle ?v)
 (value ?v vehicle_color red)
 (value ?v vehicle_position ?x)
)
)
 :language SL)

Figure 6 - Query messages in the Monitorix system

The work reported in this paper has two motivations. The first is to define an automatic
mechanism that takes a description such as the one in the message of Figure 2(b) and
produces a set of first order logic sentences representing the data model of an agent and
its relational representation (such as in Figure 4 and Figure 5). These sentences enable
the receiver to answer questions such as in Figure 6. The proposed mechanism is not
tied to our particular application domain. Other domains in which the fundamental
pieces of information are objects will equally profit from this automatism. Second, we
propose to extend the FIPA ACL language with new messages for handling
descriptions. The expected effects and the preconditions of these messages are easily
described using the formalism and computation mechanism presented in the paper.

3 Representing Objects

In monitoring and in video-based applications, objects are the fundamental data entity.
Assuming a logic-based approach to representation and communication, we view
objects as compound terms. An object can be represented as a functional expression in
which the function symbol is the constructor of the object class and the arguments are
the values of the attributes of that object. Instances of the classes vehicle and shooting
conditions would be represented by functional expressions. The constructor of the class
vehicle could be the function Vehicle, and the constructor of the class shooting
conditions could be the function ShootingCondition. Vehicle takes the three arguments
vehicle_color, vehicle_position and vehicle_size in this order. ShootingConditions takes
four arguments: luminance, tilt, time and day in this order.

Description (d1)

(Vehicle
 :vehicle_color red
 :vehicle_position
 (Position
 :position_y 1253
 :position_x 34)
 :vehicle_size
 (Size
 :size_length 4))

(Vehicle red
 (Position 1253 34)
 (Size 4 unspecified-width))

Description (d2)

(ShootingConditions
 :tilt 0
 :luminance 125
 :time 2000/06/15
 :day 8:17:13)

(ShootingConditions
 0
 125
 2000/06/15
 8:17:13)

Figure 7 - Description of a vehicle and a shooting condition

In many applications in which the data collected from the sensors is not accurate, the
confidence associated with each individual piece of information can be very low.
Sometimes, the confidence of a specific component of an object is so low that the agent
that requests that class of objects does not want to receive that component (this allows
us to avoid flooding the communication channels with useless data). For this reason,
we use a special notation for the functional expressions that represent objects. This
notation consists of explicitly stating the names of the attributes of each object. For
instance, the color of a vehicle will be preceded by the special identifier :vehicle_color,
the position will be preceded by the identifier :vehicle_position and the size will be
preceded by :vehicle_size. Functional expressions representing objects, written in the
special notation just described, are called descriptions. Figure 7 shows two examples of
descriptions and the equivalent functional expressions written in the usual notation. In
Figure 7, (d1) is a partial description of a vehicle in which the width of the size of the
vehicle is not specified. (d2) is the description of the shooting conditions in a particular
instant of time. The main advantage of using this notation is that it allows the
representation and communication of incomplete descriptions. A minor advantage is

that the order of the components of a description is not predetermined thus allowing
greater flexibility in inter-agent communication.

4 A Calculus for Object Descriptions

In this section we propose a set of inference rules that can be used to compute the
relational representation and the data model of an object from its description.
 We introduce the special predicate description/1 that is true when its argument is
the description of an object that belongs to the domain of the discourse. As described in
section 3, objects are represented by functional expressions in which the constructor of
the class of the object is applied to the values of the attributes of that object:
(constructor component1 … componentn).
 Let D be the set of all objects of the domain of the discourse, R be the set of all
relations and F be the set of all functions. Let also c represent the constructor of a class
of objects, ϕc represent the name of the class whose constructor is c, and vi represent
the value of the attribute ai. The interpretation function I maps each constant symbol
into an element of D, each relation symbol into an element of R and each function
symbol into an element of F. Iσ represents the application of I to σ. The formula
(description (c :a1 v1 … :an vn)) is satisfied iff Ic(Iv1, …, Ivn)∈D.
 The mechanism used to build the relational representation and the data model of an
object from its description is supported by the following set of inference rules:

Data-Model Rules
If (c :a1 v1 :a2 v2 … :an vn) is a description of an object of class ϕc, then ϕc is a class

(description (c :a1 v1 :a2 v2 … :an vn)) (Rule 1)

(class ϕc)

If (c :a1 v1 :a2 v2 … :an vn) is a description of an object of class ϕc, then ai is an attribute
of class ϕc.

(description (c :a1 v1 :a2 v2 … :an vn)) (Rule 2)

(attribute ϕc ai) for any i=1, …, n

Let Ωv denote the class of v and Ψv be a functional expression that returns the constant
many when v is a list and returns the constant one otherwise.
 If (c :a1 v1 :a2 v2 … :an vn) is a description of an object of class ϕc, then the attribute
ai defines a one to Ψvi relation (i.e., a one to one or a one to many relation) between ϕc
and the class Ωvi.

(description (c :a1 v1 :a2 v2 … :an vn)) (Rule 3)

(class-relation ϕc ai Ωvi Ψvi) for any i=1, …, n

Relational Representation Rules
If (c :a1 v1 :a2 v2 … :an vn) is a description of an object of class ϕc, then (c :a1 v1 :a2 v2
… :an vn) describes an instance of the class ϕc.

(description (c :a1 v1 :a2 v2 … :an vn)) (Rule 4)

(instance ϕc (c :a1 v1 :a2 v2 … :an vn))

If (c :a1 v1 :a2 v2 … :an vn) is a description of an object of class ϕc, then vi is the value
of attribute ai of (c :a1 v1 :a2 v2 … :an vn).

(description (c :a1 v1 :a2 v2 … :an vn)) (Rule 5)

(value (c :a1 v1 :a2 v2 … :an vn) ai vi) for any i=1, …, n

Recursive Rule
If the value v of an attribute is a description, then (description v) is true.

(description (c :a1 v1 :a2 v2 … :an vn)) (Rule 6)

(description vj) for any j=1, …, n such that vj is a
description

Notice that this last rule allows the recursive generation of the relational representation
and the data model of the descriptions that appear as values of the attributes of objects.
 If the previous rules are applied to the description contained in the message
depicted in Figure 2 we obtain the relational representation shown in Figure 5 and the
data-model appearing in Figure 4.

5 An Extension to FIPA ACL Language

Given the formalism described in sections 3 and 4, it is now possible to extend the
FIPA ACL inter-agent communication language with three new messages related to the
object-based communication.
 We propose to adopt the message present-object for an agent to present the
description of an object to another agent. present-object has the following basic syntax:

(present-object :sender I :receiver j :content <Description>)

in which <Description> is a description of an object as was discussed in section 3.
 The intentional semantics of a message consists of defining the condition that has to
hold just before the agent sends it (feasibility precondition) and the state that the sender
may reasonably expect to hold after the message has been received (rational effect).

Both the feasibility precondition and the rational effect are specified in terms of the
agent’s mental states [7]. Agent’s mental states are similar to those of BDI
architectures [3]. They are described using several modal operators such as bel, bel-if,
uncertain-if and intends [5]. Informally, (bel α φ) means agent α believes φ, (bel-if α
φ) means agent α believes φ or it believes ¬φ, (uncertain-if α φ) means agent α is
uncertain about φ or it is uncertain about ¬φ, and (intends α φ) means agent α intends
to be in a state in which φ holds.

Feasibility precondition of present-object. An agent can only send the present-object
message <sender, present-object(receiver, δ)> if it believes that δ describes an existing
object and it does not believe the receiver knows anything about the described object:

(and (bel sender (description δ))
 (not (bel sender (or (bel-if receiver (description δ))
 (uncertain-if receiver (description δ))))))

Rational effect of present-object. An agent selects a message to send if it may
reasonably expect the message to produce some changes in the receiver’s mental state.
The sender of the present-object message <sender, present-object(receiver, δ)> may
reasonably except that the receiver will come to believe δ describes an existing object:

(bel receiver (description δ))

(a) (b)

(inform
 :sender ObserverAgent-1
 :receiver IntermediateAgent-1
 :content
 (=
 (any ?x (mobile-object ?x))
 (Vehicle
 :vehicle_color red
 :vehicle_position
 (Position
 :position_y 1253
 :position_x 34)
 :vehicle_size
 (Size
 :size_length 4
 :size_width 2)))
 :language SL)

(present-object
 :sender ObserverAgent-1
 :receiver IntermediateAgent-1
 :content
 (vehicle
 :vehicle_color red
 :vehicle_position
 (Position
 :position_y 1253
 :position_x 34)
 :vehicle_size
 (size
 :size_length 4
 :size_width 2)))
 :language SL)

Figure 8 - Comparison between Inform and present-object message

Figure 8 shows how the inform message presented in Figure 2(b) can be replaced by a
more natural one using the present-object message. After receiving the message of
Figure 8(b) Intermediate Agent 1 will be able to answer all the questions mentioned in
section 2 using the inference rules proposed in section 4. The application of the rules to

the description presented in Figure 8(b) is described in Figure 9. We are assuming the
receiver creates the belief (description (Vehicle …)) as specified by the present-object
message.

1 (description v) Effect
of Msg.

13 (attribute position position_x R2, 10

2 (class vehicle) R1, 1 14 (attribute position position_y) R2, 10
3 (attribute vehicle vehicle_color) R2, 1 15 (instance position p) R4, 10
4 (attribute vehicle

vehicle_position)
R2, 1 16 (value p position_x 1253) R5, 10

5 (attribute vehicle vehicle_size) R2, 1 17 (value p position_y 34) R5, 10
6 (instance vehicle v) R4, 1 18 (class-relation vehicle

vehicle_position position one)
R3, 10

7 (value v vehicle_color red) R5, 1 19 (class size) R2,11
1

8 (value v vehicle_position p) R5, 1 20 (attribute size size_length) R2, 11
9 (value v vehicle_size s) R5, 1 21 (attribute size size_width) R2, 11
1
0

(description p) R6, 1 22 (instance size s) R4, 11

1
1

(description s) R6, 1 23 (value s size_length 4) R5, 11

1
2

(class position) R1, 10 24 (value s size_width 2) R5, 11

 25 (class-relation vehicle vehicle_size
size one)

R3, 11

v, p and s are the same abbreviations used in Figure 5
Figure 9 - Using Inference Rules to build a Data Model and a Relational Representation

We also propose ask-object as the dual message of present-object. ask-object is used
by an agent to ask another agent for the description of an object that matches the
condition specified by an identifying expression. In the message of Figure 10, User
Agent 1 asks Intermediate Agent 1 to present it the descriptions of all the vehicles with
length greater than 4 meters. As a result, Intermediate Agent 1 will use a present-object
message.

 (ask-object
 :sender i
 :receiver j
 :content
 <identifying expression>)

(ask-object
 :sender UserAgent-1
 :receiver IntermediateAgent-1
 :content
 (all ?obj (exists ?x (exists ?size
 (and (instance ?obj vehicle)
 (value ?obj vehicle_size ?size)
 (value ?size size_length ?x)
 (> ?x 4))))))

Figure 10 - Example of an ask-object message

Finally we propose the subscribe-object message as the persistent version of the
ask-object message. After receiving a subscribe-object message the receiver is
expected to form the intention of presenting the specified objects to the requester
whenever there are new objects available that satisfy the specified condition. Although
the syntax of ask-object and subscribe-object is exactly the same as the syntax of
query-ref and subscribe, the rational effect of ask-object is different from the rational
effect of query-ref and analogously for subscribe-object and subscribe. The rational
effect of query-ref is to create the intention of sending an inform message, whereas the
rational effect of ask-object is to create the intention of sending a present-object
message. In the remaining of this section, we present the feasibility precondition and
the rational effect of the ask-object message. The subscribe-object is the persistent
version of ask-object.

Feasibility precondition of ask-object. An agent can only send the message <sender,
ask-object(receiver, expr)> if it doesn’ t know anything about the specified object.
Furthermore, the sender must believe the receiver does not have the intention to present
it the specified object yet:

(and (not (bel-ref sender expr))
 (not (uncertain-ref sender expr))
 (not (bel sender
 (intends receiver (done
 (present-object
 :sender receiver :receiver sender :content expr))))))

Rational effect of ask-object. An agent sends the message <sender,
ask-object(receiver, expr)> if it wants the receiver to send it a present-object message
with the object satisfying the specified condition (in which | is the alternative action
operator and obji is the description of an object known by the receiver agent.):

(done (|
 (present-object :sender receiver :receiver sender :content obj1)
 …
 (present-object :sender receiver :receiver sender :content objn)))

6 Conclusions and Future Work

The main contribution of the paper is a formalism for expressing the relational
representation and the data model of objects, and a rigorous inference mechanism for
generating them from object descriptions. The other main contribution is the proposal
to extend FIPA ACL language with three new communicative acts. These messages are
especially important in environments in which the processing time and/or the
bandwidth are at premium because they allow sending and processing simpler and

shorter messages. Besides, they allow improving communication when the natural
entities of the domain are objects, not propositions.
 The proposals presented in this paper contribute to get people with object-oriented
background (such as the MPEG7 community) closer to people with logic background.
 In future work, we intend to extend the semantics of the predicate calculus in order
to accommodate the special predicates class, instance, class-relation, value and
attribute. The formal semantics of the subscribe-object message must also be defined.
The inference mechanism has to be completed in order to derive all instances of the
class-relation special predicate.

Acknowledgement. We want to acknowledge the Modest Project for providing
concrete examples of an intelligent multi-agent system and of inter-agent messages.

References

1. Abreu, B.; Botelho, L.M.; Cavallaro, A.; Douxchamps, D.; Ebrahimi, T.;
Figueiredo, P.; Macq, B.; Mory, B.; Nunes, L.; Orri, J.; Trigueiros, M.J.; and
Violante, A.: Video-Based Multi-Agent Traffic Surveillance System. Proceedings
of the IEEE Intelligent Vehicle Symposium (2000)

2. Botelho, L.M.; Lopes, R.J.; Sequeira, M.M.; Almeida, P.F.; and Martins, S.:
Inter-agent communication in a FIPA compliant intelligent distributed
dynamic-information system. Proceedings of the International Conference on
Information Systems Analysis and Synthesis (1999)

3. Cohen, P.R.; and Levesque, H.: Intention is choice with commitment. Artificial
Intelligence. 42 (1990) 213-261

4. Foundation for Intelligent Physical Agents: FIPA 97 Specification, Part2 Agent
Communication Language. (1997)

5. Foundation for Intelligent Physical Agents: FIPA 97 Specification, Version 2.0
Part2 Agent Communication Language. (1998)

6. Labrou, Y.; and Finin, T.: A semantics approach for KQML -- a general purpose
communication language for software agents. Proceedings of the third International
Conference on Information and Knowledge Management (1994)

7. Sadek, M.D.: Attitudes mentales et interaction rationnelle: vers une théorie
formelle de la communication. Thèse de Doctorat Informatique, Université de
Rennes I, France (1991)

8. Searle, J.R.: Speech Acts. Cambridge University Press (1969)

