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ABSTRACT 

We claim that it is possible to have artificial software agents for which their actions and the world they 

inhabit have first-person or intrinsic meanings. The first-person or intrinsic meaning of an entity to a 

system is defined as its relationship with the system’s goals and capabilities, given the properties of the 

environment in which it operates, as recognized by the system. Therefore, for a system to develop 

first-person meanings, it must see itself as a goal-directed actor, facing limitations and opportunities 

dictated by its own capabilities, and by the properties of the environment. 

The first part of the article discusses this claim in the context of arguments against and proposals 

addressing the development of computer programs with first-person meanings. A set of definitions is also 

presented, most importantly the concepts of cold and phenomenal first-person meanings. 

The second part of the paper presents preliminary proposals and achievements, resulting of actual 

software implementations, within a research approach that aims to develop software agents that 

intrinsically understand their actions and what happens to them. As a result, an agent with no a priori 

notion of its goals, capabilities, or the properties of its environment acquires all these notions by 

observing itself in action.  The cold first-person meanings of the agent’s actions and of what happens to it 

are defined using these acquired notions. 

Although not solving the full problem of first-person meanings, the proposed approach and preliminary 

results allow us some confidence to address the problems yet to be considered, in particular the 

phenomenal aspect of first-person meanings. 

Keywords: Cold first-person meaning; phenomenal first-person meaning; intrinsic understanding; goals; 

capabilities; properties of the environment 

 

1 Introduction 

In a debate that came to be better known as the symbol grounding problem (Harnad 1990), several 

scientists have expressed their opinions that artificial intelligence would never lead to actual intelligent 

systems (e.g., Searle (1980), Penrose (1989), Ziemke (1999), Froese and Ziemke (2009)). For these 

authors, artificial systems do not understand what happens to them, the symbols they possess, and what 

they do. That is, even when an artificial system exhibits a meaningful behaviour, that meaningfulness is in 

the head of the observer; it is not an intrinsic interpretation of the artificial system itself. 

We argue that it is possible to develop computer programs for which, objects, events, and situations have 

intrinsic meanings to the computer program, that is, first-person meanings. We use italics because we are 

applying to machines, an expression explicitly intended for people. 

Several of our arguments rely on the view that at least simple non-conscious living beings and artificial 

systems share the fundamental property of being purely rule-following mechanisms. That is, their 

behaviour in a given state (internal and external) is completely determined by the interaction between the 

natural or artificial forces applicable to their inner workings and the properties of that state. Relevant 

forces applicable to artificial systems may include the instructions of a computer program. Relevant 

forces applicable to living beings include, among others, electrical and gravitational forces. From this 

point of view, at least simple rule-following living beings face the same objections, regarding the 

possibility of developing first-person meanings, as those presented to artificial intelligence by their 

critics, especially that the meaningfulness of the behaviour of simple organisms is in the head of the 
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observer. And, just as first-person meanings have emerged, through evolution, from non-conscious 

beings, we believe that they can also develop in artificial systems. 

In spite of having presented the parallel between simple non-conscious rule following organisms and 

simple rule following artificial systems, we believe that the behavior of even complex adaptive organisms 

such as human beings emerges of rule following mechanisms. For instance, Badcock, Friston and 

Ramstead (2019) provide a completely mechanist causal account of the human brain, at the level of 

information theory. For them, the human brain is an adaptive system that actively minimizes the free 

energy (and indirectly, the entropy) of human sensory and physical states by producing self-fulfilling 

action-perception cycles that emerge from dynamic interactions between hierarchically organized 

neurocognitive mechanisms. This is a pure rule following model, originally inspired in thermodynamics, 

linking brain, mind and behavior in human beings. Wiggins (2018) also presents a similar purely 

mechanist account of the human cognition, according to which, mind processes information driven by the 

information theoretical principle of information efficiency. 

Therefore, if persons have or develop a first-person perspective, in spite the fact that their mind and 

behavior emerge of rule following mechanisms, there is nothing in principle that precludes the same from 

happening with computer programs. As noted by Wagner (2018), nothing intrinsically restricts 

personhood to human beings. Conceptually, personhood allows for the possibility of non-human persons 

that are not members of our species. 

In is syntactic semantics theory, Rapaport (2006) claims that first-person understanding is just syntactic 

manipulation and thus a computer agent can also have first-person (or intrinsic) understanding.  

This article presents our arguments and claims, our proposed research framework, and its preliminary 

results. It describes a set of conceptually defined, computationally implemented, and demonstrated 

concepts and mechanisms that support the development of first-person meanings (in a particular sense to 

which we call cold first-person meanings), and the enactment of meaningful behaviour. The described 

mechanisms and achieved results are presented within the context of the described research framework. 

The next section presents some terminology, emphasizes the main contribution of the article, and 

discusses the five assumptions of our proposed research framework. That research framework and the 

defined, implemented, and demonstrated concepts, mechanisms, and results are detailed in section 3. 

2 Research Assumptions, Terminology, Contribution, and 

Discussion 

This article discusses several concepts whose definitions are not widely accepted. In some cases, each 

author uses his/her own definitions. In other cases, not even a definition is presented in the hope that the 

common sense understanding of the concept is enough for the purpose of the discussion. In the next 

subsection, we explain the sense in which several concepts are used in the article, and we emphasize the 

main contribution of the article. Then, we describe a brief example that illustrates the way we use those 

concepts. Finally, we present and discuss our research assumptions. 

The discussion and analysis present in this section are put forward in an informal fashion. Our approach is 

rigorously formalized in section 3. 

2.1 Background Concepts and Main Innovative Contribution 

This section starts with a few clarifications regarding certain concepts and the way they are used in this 

article. First, we discuss the concept of goals. After that, we present several distinctions about 

consciousness and related concepts, especially first-person meanings. 
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Goals and other motives. One of the major claims of this article is that to develop (or to have) first-person 

meanings, a system needs to see itself as having goals or other motives. Given that the main focus of the 

article is not the distinction among different kinds of motives (e.g., value systems, desires, goals and 

intentions), for the sake of simplicity, we will use the term goals. 

Additionally, systems may see themselves as if they had goals (or other motives), even if they do not 

actually have goals. As explained by Daniel Dennett (1998), the way a system works can be described as 

if it had mental properties (e.g., goals and beliefs) in spite the fact that its behaviour may be completely 

determined by applicable forces at the physical level. This mental level of description – the intentional 

stance – might be appropriate for understanding some of the higher-level properties of the system. Thus, 

although we may describe a system as having goals, it doesn’t necessarily mean that the system’s 

behaviour is actually determined by goals. Therefore, the remainder of the article will always refer to the 

system’s goals whether those goals really determine the system’s behaviour, or they are just a way the 

system understands itself. 

The meaning of goals for a system depends on its architecture. Some architectures are not capable of 

seeing themselves as having goals, although an external observer may describe their behaviour as 

goal-directed. For systems with such an architecture, goals are totally meaningless. 

Some other architectures allow the system to understand itself and the world as if it had goals, but 

otherwise do not allow them to shape the other aspects of its behaviour because of its goals. In these 

cases, goals provide a way for the system to find meaning, to understand what happens, to know what is 

and what is not important. Aside from that, goals do not have other impacts in the system’s behaviour. 

Finally, there are other more sophisticated architectures that allow a system both to see itself and the 

world as if it had goals and also to shape its behaviour because of its goals. In this paper, we say the 

system adopts its goals. In the line of the work of Anderson and Perlis (2005), for these systems, having 

goals means to be capable of consistently conditioning their behaviour to directly or indirectly achieving 

their goals. 

The present article is mainly focused on the process that may be used by a rule following system to see 

itself as goal-directed and, after that, developing first-person meanings. In addition to this main objective, 

the paper describes and demonstrates a possible architecture capable of changing its behaviour after the 

system sees itself as goal directed.  

Without any intention of providing a comprehensive view of consciousness, we need to present a few 

distinctions that will be used to explain other concepts. Consciousness has several manifestations and 

properties such as self-location and the experienced direction of the first-person perspective (Pfeiffer, 

Lopez, Schmutz, Duenas, Martuzzi and Blanke 2013), global bodily ownership (Aspell, Lenggenhager 

and Blanke 2009), the autobiographic sense of the self (Damásio 1999), awareness (Singer 2001), 

reasoning (Singer 2001), and language (Joseph 1991). We will use the term “awareness” and derivatives 

to refer only to the knowledge or information one has by virtue of being conscious. In the sense that it is 

used hereunder, awareness is not meant to include for instance declarative reasoning and language. The 

special kind of awareness referring to the self would be termed self-awareness. 

As other manifestations of consciousness, awareness has a phenomenal component: when we are aware, 

we have phenomenal experiences, we have sensations with certain qualities, we feel. The phenomenal 

component of consciousness was termed the hard problem of consciousness by David Chalmers (1995). 

In the scope of this article, it is helpful to distinguish the information, stripped of any sensations, to which 

a sentient individual has access when he or she is aware of something. For instance, when a parent is 

aware of the presence of his/her children, he/she experiences a sensation (phenomenal) and he/she knows 

that (he/she has access to the information that) they are present (cold). 
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In the remainder of this article, we will use the expressions phenomenal awareness to refer to the 

sensations one feels because one is aware of something, and cold awareness to refer to the information, 

stripped of sensations, to which a sentient individual has access because it is aware of something. 

Finally, consciousness is also associated with a sense of continuity. When a person experiences and has 

access to information about the object of consciousness, for instance the image of an apple, the qualities 

of the experience and the information the person had access to, during the experience, will persistently be 

associated with the same object of consciousness (and to others, such as the members of the same class). 

This sense of continuity of consciousness is possibly ensured by autobiographic memory. Damásio (1999) 

distinguishes core consciousness from extended consciousness. Each time a person encounters an object 

of which he or she becomes aware, there is a pulse of core consciousness. Each pulse of core 

consciousness is a short duration event; alone, it does not ensure the sense of continuity. Only extended 

consciousness, possibly relying on autobiographic or episodic memory, provides that sense of continuity. 

First-person meanings, intrinsic meanings, and concerns. A system has (or develops) first-person 

meanings of things, situations, or events, if those things, situations, or events have (or acquire) meaning 

for the system itself.  This expression is used in contrast with what happens when the meaning is in the 

mind of the observer (third-person meanings), but not in the system itself. In computer science, when a 

token has (or acquires) meaning, it is (or becomes) a symbol. We can think of the meaning of a symbol as 

the object, the situation, or the event that it refers to. In this article, we are interested on a different aspect 

of meaning, namely the importance of the object, situation, or event to the system itself. Thus, in this 

view, given that the importance of an object for a system reflects the relation of the object with the 

system’s goals (or values, or any other source of motivation such as the need to survive), as recognized by 

the system, it is important to stress that, in the sense that we use the expression in this article, first-person 

meanings require the owners of those meanings to know that they have goals and recognize them. 

Given the above characterization, the first-person meanings of objects, situations, or events reflect a value 

system the agent is aware of (recognizes). In this sense, when an object, an event, or a situation has 

first-person meanings for an agent, that agent has concerns about that object, event, or situation.  

Cold first-person meanings, phenomenal first-person meanings, and consciousness. A system has (or 

develops) first-person meanings of things, situations, or events only if the system is aware of (i.e., 

recognizes) the intrinsic importance of those things, situations, and events to itself. If the recognition of 

such intrinsic importance results from mere cold awareness, we say the agent has cold first-person 

meanings or cold concerns. However, if the recognition of such intrinsic importance is the result of 

phenomenal awareness, if it is experienced, we say the system has phenomenal first-person meanings or 

phenomenal concerns. It is important to stress that we do not claim that the cold awareness involved in 

cold first-person meanings ensures the sense of continuity often associated with consciousness. 

We claim that (cold / phenomenal) first-person meanings of objects, situations, or events are a 

manifestation of (cold / phenomenal) consciousness in the sense that we require that the system is aware 

of the importance of those objects, situations or events to itself. However, we do not equate first-person 

meanings with consciousness because consciousness has other manifestations such as autobiographic 

sense of the self, declarative reasoning, and language. 

Given the distinctions presented so far, we are in the position of describing the main contribution of the 

article and also to clearly identify some aspects of the general problem that are not addressed in it. First of 

all, we restate that this article is concerned only with one aspect of first-person meanings, namely the 

importance of objects, situations, and events to the system. This is a difference regarding other work 

addressing first-person meanings, for example the work by Harnad (1990), Rapaport (2006), Cangelosi, 

Greco, and Harnad (2002), Vogt (2002), Machado and Botelho (2006), Steels (2003; 2008), and Raue and 

colleagues (2018), which focuses on the symbol reference problem, namely the problem of directly or 

indirectly grounding each symbol of an artificial system on the object, situation, or event referred to by 

the symbol. 
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We assume that goals, value systems, or other sources of motivation (such as the need to stay alive and 

the need to preserve our genes) are sources of importance. If an event facilitates or impairs the 

achievement of someone’s goals, then that event is important for that someone. If a situation is unrelated 

to someone’s goals, then the situation is unimportant to that someone. That is, first-person meanings or 

concerns require that the system sees itself as having goals. 

Possibly the most significant innovative contributions of this article are (i) recognizing that, for the 

purpose of developing first-person meanings, the system must see itself as being goal-directed; and (ii) 

providing an approach for a program with no explicit notion of goals to discover that it might have goals 

and thereafter start interpreting its behaviour and what happens to it as if it were goal-directed. 

Rapaport (2018) formulated the question of whether a computer program is a completely syntactic 

algorithm of the form Do A, where A is either a computation (either primitive or compound); or a 

semantic algorithm of the form In order to accomplish goal G, do A, where G is a teleological description 

of what A is intended to accomplish. Taking inspiration on this question, we restate the main 

contributions of this paper as (i) recognizing that “In order to accomplish goal G, do A” programs 

possess a semantic understanding about themselves, and (ii) offering a set of implemented algorithms by 

which a mere “Do A” program becomes a “In order to accomplish goal G, do A” program. 

To the best of our knowledge, no other work has ever addressed the problem of computational first-

person meanings in this way. 

We claim the above contribution to be significant given that it represents a way around a plethora of 

objections about first-personhood, living beings, materialism, and computer programs. In fact, it has been 

argued (e.g., Dreyfus (1972), and Thompson and Stapleton (2009)) that only living beings can develop 

intrinsic meanings because only living beings have intrinsic motives (the need to survive). To those 

arguments we reply that all that happens with simple organisms as bacteria is acting as determined by the 

interplay between their state (internal or external) and applicable natural forces – similarly to computer 

programs, they are just rule-following systems. However, this position faces a second sort of objections. 

Searle (1980), for example, says that (syntactic) rule-following systems cannot generate meanings 

(semantics) because semantics cannot arise from syntax. It is maybe this argument that reveals the 

potential importance of our contribution. The possibility of first-person meanings does not elude the rule-

following nature of organisms and computer programs because the system does not have to exceed its 

nature, if it is to develop first-person meanings. In our view, it has to interpret itself as being goal-directed 

(even if its behaviour is only following rules). That is, first-personhood is within reach of rule-following 

systems. 

Although required, seeing itself as goal-directed and recognizing its own goals is not enough to develop 

first-person meanings. If the system could always achieve all its assumed goals, it would not be 

concerned about them because there would not be true obstacles to their achievement. The importance of 

things, situations, and events is also dependent on the system’s capabilities and on the properties of its 

environment. This article contributes to realize (or, at least, to emphasize) the described relationship and 

to provide the means for a computer program, originally with no notion of goals, capabilities, or the 

constraints and opportunities created by its environment, to learn them just by observing itself in action. 

We claim that the presented contributions tackle the problem of developing cold first-person meanings, in 

the sense that it enables an agent to start interpreting its behaviour and what happens to it as if it were a 

goal-directed constrained entity. That is, the agent has cold awareness of the relation between objects, 

situations, and events and the possibility of achieving its goals, given its limited capabilities, and the 

constraints and opportunities created by the environment.  

Although recognizing that solving the full problem of first-person meanings requires phenomenal 

awareness, the present work does not contribute to solve this more difficult problem. This will be an 

important object of future research. 
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The enumerated contributions are materialized as a set of concept definitions and algorithms that allow 

the agent to acquire cold first-person meanings. 

The agent’s sensors provide information regarding each state of the world and the actions it performs, 

leading from one state to the next. The information provided by the sensors is represented by predicates 

Proposition/1 and Action/1.  Facts of the predicate Proposition/1, such as Proposition(On(A, B)) (i.e., 

On(A, B) is a proposition), describe each observed state. Facts of the predicate Action/1, such as 

Action(Move(A, 1, 2)), describe the performed actions. The agent also learns other properties of the 

entities of the domain, namely the concepts of static proposition, fluent proposition, desired proposition, 

and mandatory proposition. 

The agent learns that its behaviour could be interpreted as if it were goal directed. Goal(PropSet) is the 

fact used by the agent to represent the goals it learns to have. The agent behaviour could be described as if 

the agent were striving to achieve a state in which the propositions in PropSet are true. 

The agent learns the meaning of its actions. Precond(Act) represents the set of preconditions of action Act.  

PosEffects(Act) and NegEffects(Act) represent the sets of propositions that become true and false by 

virtue of executing action Act. ValidityCondition(Act) represents a logical condition that constraints the 

arguments that can be used in action Act, that is, it constrains the objects to which the action can be 

applied. 

The agent also learns constraints that arise of the interplay between its environment, its goals, and its 

capabilities. MustPrecede(Prop1, Prop2) represents the fact that the proposition Prop1 must precede 

Prop2, or else the agent will not be capable of achieving its goals. 

Finally, and most importantly, the agent learns to explain its own actions in terms of its learned goals and 

in terms of the requirements of other actions it also performed. The predicates Achieved/3 and 

Contributed/3 represent what was achieved by the agent, when it performed a given action, and what was 

the contribution of an observed proposition to the actions executed by the agent. Achieved(State, Act, 

PropsSet) means that the action Act, executed in state State achieved all the relevant propositions in 

PropSet. These propositions are relevant for the agent because they are either goals or preconditions 

actually used by the agent to perform subsequent actions. Contributed(State, Prop, Act) means that 

proposition Prop, true in state State, actually contributed to action Act, which was executed in that State 

or in a future state. 

Achieved/3 and Contributed/3 represent the first-person meanings of actions and propositions performed 

or observed by the agent in specific behaviours, by showing their contribution to the path leading to the 

achievement of its goals. The proposed approach does not address first-person meanings of objects; just 

of propositions and actions. 

The agent learns all the mentioned concepts from scratch, that is, starting with nothing at all, only through 

observation of its action in the world. Before using the proposed algorithms, the agent does not know the 

propositions that describe the world or the ones that could describe it; it does not know anything about its 

actions, it does not know the goals it has or the ones it could have. The agent does also not know anything 

about precedence relations to which it must comply if it wants to achieve its goals. Finally, it does not 

know anything about the importance of specific observed facts for its action, or the reasons why it acted 

in a certain way. The agent learns all these, using the algorithms and deduction axioms described in 

subsection 3.1. The mentioned algorithms (although with some application restrictions) are absolutely 

independent of the application domain. The next section relates the learned concepts with an example. 

2.2 Brief Example 

We briefly present a short, imagined example that illustrates our point of view and concepts.  
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 A robot was programmed to weld the external panel of car doors and then to assemble the doors to the 

car. It has no goals because it is just following the instructions contained in its control program. It also 

does not have any notions of its capabilities nor of the properties of the environment. Using the proposed 

algorithms, the robot starts seeing itself as if it were motivated to achieve a situation in which it has 

assembled the doors to the car and has welded the external panels to the doors. We stress the fact that 

using the proposed algorithms leads the agent to discover its goals only in the cold sense. 

In addition to believing that it has these goals, the agent also becomes aware of its capabilities, for 

instance, assembling a door to the car, grabbing the weld torch and using it to weld door panels, the 

conditions under which they can be used, and the effects they produce in the world (Precond/1, 

PosEffects/1, NegEffects/1 and ValidityCondition/1).  

The robot also discovers properties of its task, such as that it must weld the panel to the door before it can 

assemble the door to the car (MustPrecede/2) because, although having the door panel welded is not a 

pre-condition to assemble the door, it cannot weld the door panel if the door is already assembled to the 

car.  

In the eyes of the robot, a situation in which it has assembled the doors to the car and has welded the 

external panels to the doors means that it has fulfilled its goals – it is positively valued by the robot. 

In a given behaviour (a specific sequence of actions), the welding robot picks up the welding torch, welds 

the external panel P1 to the car door D1, and assembles D1 to the car. In this specific behaviour, the 

executed action of picking up the welding torch is meaningful to the robot because it achieved 

(Achieved/3) a proposition (holding the welding torch) that, although not one of its goals, contributed 

(Contributed/3) to executing the subsequent action of welding P1 to D1. The action of welding P1 to D1 is 

also meaningful to the robot because it achieved (Achieved/3) one of its goals (having welded P1 to D1). 

Having achieved a state in which P1 is welded to D1 before the state in which D1 is assembled to the car is 

also meaningful to the robot because it satisfies the precedence relation (MustPrecede/2) according to 

which having the external panel welded to the door must occur before having the door assembled to the 

car. 

The door, the door panel, the car, the welding station are meaningful, but our proposal does not address 

the meaning of objects; just the meanings of propositions and actions. 

A situation in which the welding station is broken is also meaningful to the robot because it knows that it 

will not be capable of achieving its goals (in work developed after the one described in this article, we 

proposed algorithms that determine when a proposition prevents another one from occurring). This 

situation is negatively valued by the robot.  

If the robot does not have feelings, in the phenomenal sense, the described meanings (positive and 

negative) are cold first-person meanings – the robot has cold concerns about those meaningful situations 

and events.   

If the robot phenomenally feels the situation in which the welding station is broken, the situation has 

phenomenal first-person meaning to the robot – the robot has phenomenal concerns about it. 

Finally, the car engine, the car paint, the situation in which the engine is not assembled to the car, or the 

event in which another robot damaged the car engine, for example, have no importance to the robot in the 

light of its learned goals. The robot does not have any concerns about the car engine or the other robots. 

Section 3 describes the domain-independent definitions and algorithms used by an agent with no prior 

notion of goals, capabilities, or the properties of the domain, to become aware of all this information. 

After that, the agent is capable of explaining the meaning of events and situations, which, from its own 

point of view, acquire importance with respect to its assumed goals and capabilities, and the properties of 

the domain. Results are presented for a demonstration scenario.   
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2.3 Research Assumptions 

Without a test, it is impossible to rigorously determine if a specific computer program has developed 

first-person meanings. Unfortunately, such a test has not yet been developed. Two major difficulties are 

hindering its development. The first difficulty arises from our insufficient understanding of what it means 

to have first-person meanings.  

 The second difficulty comes from the fact that, even if it were possible to define a test for first-person 

meanings applicable to animals, it could happen that the same test would not be applicable to computer 

programs. To see that this may be the case, consider the mirror test for self-awareness (Gallup Jr. 1970). 

This test was created by psychologist Gordon Gallup Jr. to determine whether a non-human animal 

possesses the ability of self-recognition, and it has been used as a self-awareness test. If an animal, in the 

presence of a mirror, is capable of adjusting its behaviour towards itself (e.g., touching a marked part of 

its body that becomes visible only in the mirror), then the animal recognizes itself in the mirror, which, 

for some, is evidence that the animal is self-aware. 

If a computer program passes an adapted version of this test, it would not necessarily mean that the 

program is self-aware because it could have been programmed to exhibit the desired kind of behaviour 

without recognizing itself in the mirror. Possibly, this test would reveal that a program is self-aware only 

if we knew the program was defined in a certain way. Gold and Scassellati (2009), and Zeng, Zhao, Bai 

and Xu (2018) developed an unsupervised learning algorithm that enables a robot to reliably distinguish 

its own moving parts from those of others, just by looking at a mirror. We may be willing to interpret this 

experiment as revealing self-awareness. However, this would happen only because we know that the 

robot uses an unsupervised learning algorithm – it was not explicitly programmed to act as if it 

recognized itself.  We still need better tests that do not rely on our knowledge of the way the program is 

written. 

Without a test directed at determining the existence of first-person meanings, the discussion about the 

possibility of having computer programs with first-person meanings and the discussion about the way to 

achieve them cannot be more than just argumentative. We are aware of the arguments used by detractors 

of artificial intelligence. However, those arguments, as well as ours, may have flaws. Nevertheless, we 

think that pursuing the research objective of having computer programs with first-person meanings, even 

though it might be unachievable (which we do not believe), will have a beneficial impact on both our 

understanding of the problem and the possibility to create more effective computer programs capable of 

facing more complex problems. 

We firmly believe that it is possible to have computer programs with first-person meanings.  Our point of 

view and the research we have been doing is based on the following research assumptions: 

1. It is possible to achieve software agents that develop first-person meanings, starting with software 

systems with no such capabilities, either through historical evolution or through individual 

development. 

2. By definition, first-person meanings are recognized by their owner. 

3. The agent’s goals, the description of the agent’s capabilities, and the description of properties of the 

domain are fundamental concepts on top of which the agent may be capable of developing 

first-person meanings. 

4. For the purpose of the present research, it is not important to know if the agent is really guided by 

goals. It is also not important to understand the evolutionary process by which organisms would have 

become goal-directed individuals. What is actually important is finding a way an agent starts seeing 

itself as goal-directed. 

5. After the agent acquires the knowledge of its assumed goals, and the description of its capabilities, 

tasks, and environment, it is important for the agent to adopt them, and their relationships, and to 

shape its future behaviour accordingly. 
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The next subsections discuss related work, both objections and proposals, regarding the possibility of 

having computer programs that develop first-person meanings in the framework of our research 

assumptions. In the next section, we examine mainstream work on artificial agents with goals (and other 

motives). In most cases, the discussed work is not related with the present article. In other cases (i.e., goal 

recognition), although marginally more related to ours, it does not represent any clear advantage relative 

to our proposal. Then, we discuss claims about the theoretical impossibility to create computer programs 

that develop first-person meanings. In particular, we analyse the position that only living beings are 

capable of developing them. Then, we discuss three groups of proposals regarding this problem. The first 

group addresses the sub problem of symbol reference. The second group stresses the need of a motivation 

system. Finally, the third group proposes that instead of building computer programs that develop 

first-person meanings, computer scientists should embrace the problem of building software 

environments from which the desired programs would emerge. 

2.4 Mainstream Research on Agent Goals 

A fundamental notion of our approach is the concept of goal (in the broad sense, as explained in section 

2.1). The field of intelligent autonomous agents has produced a vast amount of work related with goals 

and goal processing. The main purpose of this section is to show that the research related with goals that 

has been published in the field of autonomous agents is not related to the work presented in this article. 

Goals and other motivational states (as desires) play important roles in emotion (Castelfranchi and Miceli 

2009), forgiveness (Miceli and Castelfranchi 2011), relevance (Paglieri and Castelfranchi 2014), 

individual regulation process (Pezzulo and Castelfranchi 2009), among others. All this work assumes that 

goals (or the required related motivational concepts) already exist. In our contribution, goals are 

autonomously discovered and used with a different purpose, namely the generation of first-person 

meanings, and a mechanism by which rule following entities, which do not have goals, may start seeing 

themselves and the world as if their behaviour were directed by goals. 

BDI (Beliefs, Desires and Intentions) accounts of agent behaviour (Rao and Georgeff 1995) provide 

models of agent reasoning, planning (for goal achievement) and intention formation (Cohen and Levesque 

1990; Rao and Georgeff 1991a; Rao and Georgeff 1991b;  Castelfranchi and Paglieri  2007; de Silva 

2017; de Silva, Padgham and Sardina 2019). Once again, this is not the main subject of this paper because 

BDI approaches assume the existence of goals or desires, while we start with agents with no such 

motivators and propose algorithms that can be used by such rule following entities to start seeing 

themselves as if they were goal directed agents. However, we also propose that once an agent starts 

seeing itself as having goals it only becomes a goal directed agent if it adopts the discovered goals. By 

adopting a goal, we mean shaping its future behaviour in accordance with the discovered goal. Our paper 

does not focus on this process, nevertheless, we proposed and implemented an agent that changed its 

behaviour to account for its discovered goals, using a planning algorithm. 

In accordance with general theory presented by Conte and Castelfranchi (1995), Castelfranchi (1998) and 

Andrighetto and Castelfranchi (2013) discuss goal-mediated mechanisms of norm compliance, goal 

delegation, and goal adoption in the context of social action. The major principle is that an agent adopts a 

goal (or a norm) only if the agent believes that the goal is instrumental for other goals that it already 

possesses. That is, according to these proposals, it is required that the agent already has goals. In this 

article, we propose an approach by which rule following entities, which do not have goals, can discover 

that their behaviour could be explained as if they had goals. 

Pezzulo and Castelfranchi (2007) propose a mechanism of goal formation: goals are formed as the result 

of a process that consists of evaluating actual or imagined states of affairs with respect to the agent’s 

drives (or any other reward mechanism). Thus, the formation of a motivator (e.g., a goal, in their case) 

requires the previous existence of some other motivator (e.g., a drive, in their case). However, in our 
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research, we do not need to assume the previous existence of any kind of motivator. We start with mere 

rule following entities (computer program, in our case), which are not supposed to have motivators.  

In what concerns goal recognition, most of the related work involves open-ended narrative games 

(namely, the CRYSTAL ISLAND open-world educational game). For instance, Mott, Lee, and Lester 

(2006) (probabilistic models, such as n-gram based models and Bayesian networks), Ha and colleagues 

(2012) (Markov logic networks), and Min and colleagues (2016) (Long Short-Term Memory-based 

approach) use information like the narrative state, the actions of the users, and the location of the user in 

the virtual world to select the users’ goals from a previously defined set of possible goals. Sohrabi and 

colleagues (2016), Pereira and colleagues (2017), Pozanco and colleagues (2018) and Amado and 

colleagues (2018) propose planning-based goal recognition approaches and assess their proposals on 

different planning domains, but again the set of possible goals is previously known and used for the 

determination of the agent’s goals. 

2.5 Theoretical Impossibility of Building Computer Programs with 

First-person Meanings 

Although none of them uses the expression first-person meanings, for Searle (1980) and also for Penrose 

(1989), only exact copies of living beings would be capable of first-person meanings because 

consciousness is generated at the physical level of the brain, in the context provided by the body to which 

it is coupled. 

We argue that this does not have to be the case because we can start by creating a functional architecture 

(Pylyshyn 1980) with the same properties of the brain coupled to its body, at the desired level of 

abstraction. Then, it would be possible to create the processes responsible for first-person meanings on 

top of that functional architecture (note that Block (1996) presents arguments against functionalism). 

Penrose puts forth a more difficult argument: since mathematicians can prove propositions that, according 

to Gödel (1931), cannot be proved by a computer program, there must be processes taking place in the 

human mind that are not computable. Given that, for Penrose, the only known non-computable physical 

phenomenon is quantic objective reduction, he hypothesized that consciousness would have a quantic 

basis. Hameroff and Penrose (1996; 2014) propose a model of consciousness whose physical basis is the 

quantic objective reduction taking place in the microtubules of the brain cells, which they consider not 

computable. Since we require that agents are aware of first-person meanings, a manifestation of 

consciousness, this argument undermines the functionalist approach since it would be impossible to create 

a computer program capable of exhibiting the desired properties at the quantic level because they were 

assumed to be non-computable. 

LaForte, Hayes, and Ford (1998), and Krajewski (2007) show that Penrose’s conclusion that the human 

mind involves non-computable processes is wrong. LaForte, Hayes, and Ford show that the 

mathematicians that have proved the sentences that are not provable by an algorithm could only do that 

because they did not prove the soundness of their proofing procedure, which would be required for a 

proper proof. According to these authors, proving the soundness of the used proof procedure is 

impossible, even for those mathematicians. Krajewski presents and proves a general theorem, which 

shows that every kind of argument similar to that of Penrose must be either circular or lead to an 

inconsistency. 

Ziemke (1999), Froese and Ziemke (2009), and Sharkey and Ziemke (2001) claim that any externally 

developed mechanisms aimed at creating meanings for a computer program will always produce arbitrary 

results for the computer program itself exactly because they are externally created. 

To overcome this obstacle the computer program would have to create and maintain, from within, its 

whole network of parts and processes, as it is the case with living beings. This way, the meaning 
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development mechanism of the program, being developed and maintained by the program itself, would 

produce non-arbitrary meanings for the program. 

Esteves and Botelho (2007) presented an approach, according to which, the computer program develops 

and maintains all of its parts and processes from within, starting from an initial pre-programmed zygote. 

Since this initial zygote is pre-programmed, the approach continues to face objections because the initial 

zygote of living beings is the result of the co-evolution of the species and its environment; it was not 

externally created. 

We believe that the fact that a living being develops itself and all its parts and processes from within does 

not constitute an advantage concerning the possibility of having first-person meanings. Some of the 

requirements for a system to develop first-person meanings are (i) being capable of determining the 

importance of objects, events, and situations in face of their goals, their capabilities, and the 

characteristics of the domain; and (ii) being aware of (recognizing) that importance. A system can do this 

if it sees itself as if it were a constrained goal-directed entity in relation with its environment, considering 

that “seeing itself in a certain way” is being aware. Simple living beings and computer programs, as other 

rule-following systems, do not in fact have goals; they just do what the forces applicable to their inner 

workings impose them given what happens to them. However, once equipped with appropriate processes, 

a rule-following system may see itself as goal-directed. 

Besides, it is not absolutely accurate that a living being creates all its processes from within. In fact, living 

beings whose behaviour is totally determined by natural forces (e.g., electrical and gravitational forces) 

do not create those forces. Therefore, the lowest level processes taking place in a living being, those at the 

physical level, are determined by forces external to the living being. 

2.6 Simple Organisms and First-person Meanings 

Thompson and Stapleton (2009), and Froese and Ziemke (2009) claim that the life of even the simplest 

organism can be described as a sense-making activity. For instance, a specific motile bacterium moves 

along the gradient of sugar concentration towards its highest value, as a result of its metabolism. Even 

simple organisms, as the mentioned bacterium, regulate their interactions with the world in such a way 

that transforms the world into a place of salience, meaning, and value. According to these authors, this 

shows how the relation of even simple organisms with their environment becomes meaningful as a result 

of the organisms’ metabolism. 

Thompson (2011) and Froese (2015) recognize that this kind of meaning (sense-making) is not to be 

equated with the first-person perspective of conscious beings. However, Froese and Ziemke (2009) 

believe that it is impossible to have systems with first-person meanings that are not rooted on the 

lower-level sense-making mechanisms resulting of their metabolism. 

We argue that the meaningfulness that is created by simple organisms, such as bacteria, as a result of their 

metabolism, is in the head of an external observer, exactly in the same way that critics of artificial 

intelligence have identified in the meaningfulness of the behaviour of artificial systems. In fact, the 

behaviour of simple organisms results, in each moment, of the interplay between the natural forces 

applicable to their inner workings and their state (internal and external), at that moment. In short, simple 

organisms are just rule-following systems, exactly in the same way as computer programs. None of them 

has a first-person perspective of what they do and of their environment. One of the requirements for the 

emergence of a first-person perspective in a system is the capability of relating what it does and what 

happens to it with its assumed goals, its capabilities, and the constraints and opportunities its environment 

places on the possibility of the system to achieve its goals. However, goals and goal-based explanations 

may be mere useful abstractions that enable observers to better understand the behaviour of complex 

systems (Dennett 1998). For instance, a thermostat may be described as if it had the goal of maintaining 
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the temperature within a specified range. However, the behaviour of the thermostat is not determined by 

goals; it is determined by applicable low-level forces, for instance, the instructions of a control program.  

How then is a system to develop a first-person perspective, if it does not have any goals or other motives? 

Only systems capable of rationalizing (explaining) their behaviour and their environment as if they were 

constrained goal-directed entities can have a first-person perspective. 

This is the reason we claim that, regarding the development of first-person meanings, it is not important 

to know whether or not the system actually has goals; what is important is seeing itself as a goal-directed 

entity. 

Given that the sense-making of simple organisms is not an intrinsic property of those organisms but, 

instead, lies in the mind of the observer, and hence metabolism is not a requisite for first-person 

meanings, we believe that it is possible to individually develop or to historically evolve computer 

programs with no first-person meanings into computer programs with first-person meanings. The 

mentioned development or evolution process must, among other things, provide the resulting computer 

programs with the capability to see themselves as constrained goal-directed entities, and to become aware 

of the importance of things, events, and situations relative to the program’s goals, capabilities, and to the 

properties of its environment. 

2.7 The Sub Problem of Symbol Reference 

Although not the main focus of this article, which focuses on the importance of events and states of 

affairs to a system in relation to the system’s goals, the general problem of first-person meanings includes 

also the symbol reference problem. We briefly describe some of the approaches to the symbol reference 

problem. 

Several authors make use of the physical components of robots, e.g., sensors and actuators, to tackle this 

problem. Namely, Harnad (1990), and Cangelosi, Greco, and Harnad (2002) ground the symbols of their 

systems on the system’s sensors, while Mugan and Kuipers (2012) ground the plans of their robots on the 

motor commands of their actuators. Although relevant, this kind of work does not equip the agent with 

the awareness of the importance of objects, situations, and events to the agent’s goals. 

Another approach to the symbol reference problem relies on the interactions between systems. For 

example, Vogt (2002), Steels (2003; 2008), and Machado and Botelho (2006) involve their systems in 

especially designed social interactions through which they develop, from scratch, a shared lexicon of 

symbols, each of which is connected to the object (and sometimes the category) they represent. Once 

again, symbol reference is not the same as its importance. 

Pezzulo and Castelfranchi (2007) explain the way symbols may become detached from their original 

sensorimotor interaction, without losing their aboutness, their relevance, and their normativity. 

A different approach is to look at the symbol reference problem from the behavioural perspective. For 

example, Anderson and Perlis (2005) claim that computational tokens have or acquire representational 

powers for a computer program if they play consistent behaviour-guiding roles for the program. In this 

case, the meaning of each symbol is rooted in its behaviour-guiding role, that is, in its causal powers. 

Even though the behaviour of a computer program is consistently dependent on each symbol (due to the 

assumed consistent behaviour-guiding powers of the symbol), the program would not be capable of 

stating the meaning of each of its symbols.  

For Brooks (1991), symbols and symbolic processing are not required for intelligent behaviour therefore 

his robots avoid the symbol reference problem. In our point of view, if the robot is to determine the 

importance of objects, events, and situations, it must see all it does and all that happens to it in the light of 

its goals.  Moreover, as Vogt (2002) argues, several high-level mental activities, such as language, require 

symbols (but see the work of Cuffari, di Paolo, and de Jaegher (2015) for a contrasting opinion).  
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2.8 The Need of a Motivational System 

For Dreyfus (1972), systems may develop first-person meanings only if they have body with body-related 

needs, which give rise to motivated behaviour. Steels (1996) and Birk (1997) developed robots that 

successfully learn to stay alive in their environment relying only on mechanisms aimed at preserving 

internal variables within specified values, which may be seen as a form of motivated behaviour. Savage 

(2003) discusses a set of processes by which complex motivated behaviour can be developed in artificial 

agents, either by gradual improvement through the agent’s experience or by historical evolution. 

We fully agree that a motivational system is required for first-person meanings. However, we argue that, 

even if the presented systems (Steels 1996; Birk 1997) act as if they knew what is important to them, they 

do not really have any idea of the importance of objects, events, and situations, in the sense that they 

would not be capable of saying that they are important (the systems would not recognize that importance). 

First-person meanings is the recognition, by the system, of such importance. 

2.9 Emergence of Agents with First-person Meanings 

As already stated before, Froese and Ziemke (2009), among others, contend that it is impossible to build 

computer programs with first-person meanings because the computer program would have to create and 

maintain itself and the whole network of its parts and processes from within. To circumvent this problem, 

Froese and Ziemke (2009) present the quite radical idea that instead of trying to build programs with 

first-person meanings, scientists should focus on the definition and creation of environments with such 

dynamics that enable the emergence of computer programs with first-person meanings. 

We feel sympathetic towards this idea, which we thoroughly considered adopting and implementing. 

Although we have not yet excluded this possibility, we have decided to tread a more traditional route for 

the following reason. Since we know of no literature reporting the emergence, from currently existing 

environments, of computer programs with first-person meanings, we think that currently existing 

environments will not do. Therefore, we would need to create new and different environments from 

which the desired computer programs would emerge. However, we cannot be sure that a computer 

program with first-person meanings emerging from the new environment would be capable of tackling 

the problems of currently existing environments. Chances are that the emerging program would contribute 

to our understanding of the problem but not to solve the problems of currently existing environments for 

which we already need better programs. Besides, we feel that the problem of defining environments from 

which the desired computer programs would emerge is even less understood than the problem of defining 

the desired programs in the first place. 

3 Research Approach, Proposals and Achievements 

Following the research assumptions presented in the previous section, our research agenda consists of 

investigating the following problems: 

1. Mechanisms by which a computer program (i) discovers that its behaviour is (or could be) 

goal-directed, (ii) discovers the description of its capabilities, and (iii) discovers properties of the 

task it performs and the environment it inhabits; 

2. Mechanisms by which a computer program may use its knowledge about (cold awareness of) its 

goals, its capabilities, and the properties of the task it performs and of the environment it inhabits 

to create cold first-person meanings of objects, events and situations; 

3. Mechanisms by which a computer program may use its knowledge about its goals, about its 

capabilities, and about the properties of the task it performs and of the environment it inhabits to 

shape its future behaviour; 
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4. Mechanisms by which phenomenal experience may be developed in computer programs. We are 

interested, in particular, in the phenomenal awareness of the importance of objects, events, and 

situations in relation to the agent’s goals, its capabilities, and the constraints and opportunities 

presented by the environment, which is the phenomenal component of first-person meanings, in 

the sense we have chosen to address. 

5. Everything we do in engineering must be validated therefore all the described problems must be 

associated with adequate validation procedures. However, designing formal validation procedures 

for some of our targeted research goals, in particular feelings in the phenomenological sense, will 

be a major challenge. The design of such validation procedures is another problem of the 

proposed approach. However, we believe that designing such tests will only be possible after we 

have gained a deeper understanding of the concepts we are dealing with. 

This article contributes mainly to the two first problems of the presented research agenda. A smaller 

contribution to the third problem is also presented. 

In our approach there is no single concept that can be equated with (cold) first-person meanings. On the 

contrary: almost every concept acquired by the agent from the observation of its behaviour (see tables 1, 

2, and 3) reflects some aspect of first-person meanings, is used in the definition of other concepts that 

reflect some manifestation of first-person meanings, or both. Section 3.1 presents rigorous formalizations 

of all concepts learned by the agent, using the approach we have proposed. Given that the main technical 

contribution of this paper is the set of algorithms and derivation schema used to acquire the first-person 

meanings related concepts presented in tables 1, 2, and 3, our formalization was designed from the 

perspective of enabling the acquisition / learning of some of these concepts and the derivation of the 

others. Given its main focus, the article does not present a formalization aimed at enabling agents to use 

the acquired concepts in reasoning, decision-making, and action selection. 

Besides the mentioned formalization, section 3.1 also discusses the ways in which the concepts acquired 

by the agent reflect some manifestations of first-person meanings. For instance, the predicates Achieved/3 

and Contributed/3 allow the agent to understand its behaviour as a meaningful endeavour to reach its 

goals. Achieved(State, Action, RelevantProps) means that the specified action, executed in the specified 

state achieved the specified relevant effects. A proposition is a relevant effect for the agent (from a first-

person perspective) if it is one of the agent’s goals (also learned) or if it is the precondition of an action 

executed by the agent in a future state that actually “consumed” the proposition, which is captured by the 

predicate Contributed/3. All this is also part of the first-person understanding of the goal directed nature 

of the agent’s behaviour. 

However, these are not the only learned predicates capturing aspects of first-person meanings. For 

instance, the fact that the agent is constrained by its capabilities and by the structure of the domain is 

captured by the predicates and functions describing the preconditions, effects, validity conditions of the 

agent’s actions, and the precedence relations between the states of the agent’s behaviour (the also learned 

predicate MustPrecede/2). 

The first subsection of the present section describes the concepts that have been acquired by an initial 

program with no understanding of what it does and of what happens to it, and the domain independent 

algorithms that have been used for the acquisition of those concepts. 

The second subsection describes a proof of concept scenario and shows that the achieved results 

encourage furthering our research.  

3.1 Understanding what Happens 

The conceptual framework of our work is represented in Fig 1. The software agent is situated in its 

environment through its sensors and actuators. In addition to the sensors and actuators, the software agent 

has three additional components: the executor, the observer, and the adopter.  
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Fig 1 Functional conceptual framework 

All of these components share the same sensors and actuators. Besides, the observer component has direct 

access to the actions executed by the executor component, most in the same fashion as the internal 

observation function of the brain (the “inner eye”), as proposed by Singer (2001)). The executor 

component is programmed to execute a given task with no sense of goals, with no explicit knowledge 

describing the agent capabilities (sensors and actuators), and with no explicit representations of the 

domain. It just senses the environment, through the agent’s sensors, decides what to do (this does not 

have to involve any deliberative process relying on explicit knowledge representations), and acts on it 

through the agent’s actuators. The observer component senses the environment exactly as sensed by the 

executor component, and also senses the actions being performed by the executor. The observer is 

responsible for learning the agent’s goals, the description of the agent’s capabilities, and several 

properties of the agent domain. The adopter uses the knowledge acquired by the observer to shape the 

agent’s future behaviour and to produce conscious feelings of what happens, that is, phenomenal 

first-person meanings. This conceptual framework is described at the functional level. That is, the 

different agent components correspond to agent functions, not necessarily to different structural 

components. 

The main focus of the work reported hereunder is the observer functional component and a small part of 

the adopter functional component. We have not addressed the generation of conscious feelings, in the 

phenomenological sense. 

In what follows, a behavioural instance is the sequence of actions the agent’s executor component 

performs. A behavioural class is the set of behavioural instances with the same purpose, i.e., the set of 

behaviours the agent executes for alternative configurations of the same task the agent’s executor was 

programmed to perform.  

In the remainder of the section, a behavioural instance is described as an initial state followed by a 

sequence of action-state pairs. The state of the last action-state pair of the sequence is called the final 

state. As the agent’s executor executes the actions of a behavioural instance, the agent’s observer senses 

the states and the executed actions. 

We have defined a set of concepts to be learned by the agent’s observer component as it observes what is 

being done by the agent’s executor component. Some of the defined descriptions are properties of the 
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observed entities of the domain (Table 1, e.g., Proposition/1, Action/1 and Goal/1). The other descriptions 

relate entities of the domain (Table 3 and Table 2, e.g., Achieved/3, Contributed/2, MustPrecede/2, 

Precond/1). Domain entities comprise actions and propositions. A state is a set of positive atomic 

propositions representing their conjunction. For convenience, states are identified by unique identifiers. 

We have chosen to use non-negative integers to index states. State S0 of a behavioural instance is its 

initial state. States are numbered by increasing order of their occurrence.  

Descriptions are organized into two other groups according to a different criterion: those that apply only 

to specific behavioural instances (Table 3, e.g., Achieved/3 and Contributed/2) and those that are 

independent of specific behavioural instances (Table 2, e.g., MustPrecede/2 and Precond/1).  

Finally, some descriptions are represented by functions (e.g., PosEffects/1 and NegEffects/1) whereas 

others are represented by predicates (e.g., Achieved/3, MustPrecede/2). 

Table 1. Learned entity properties 

Proposition(Entity) Entity is a proposition 

StaticProposition(Entity) Entity is a static proposition (true in all states of all behavioural instances of 

the same class). 

FluentProposition(Entity) Entity is a fluent proposition (true only in some states) 

Action(Entity) Entity is an action. 

Goal(PropsSet) The goal of the agent is the conjunction of all propositions of the set 

PropsSet. That is, all the agent behavioural instances of the same behavioural 

class are directed to achieve a state in which all propositions in PropsSet are 

true. 

Desired(Prop) Prop is a desired proposition. A proposition is desired if it is one of the 

agent’s goals. 

Mandatory(Prop) Prop is a mandatory proposition in the sense that, although it is not a goal, 

there has to be at least one state in the agent behaviour, in which the 

proposition is true. The obligation results of the interaction of the task 

structure, the agent’s goals and the agent’s capabilities. 
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Table 2. Descriptions that relate entities. Applicable to all behaviours  

MustPrecede(Prop1, Prop2) In all instances of the same class of behaviours in which Prop1 and Prop2 

have occurred, Prop1 and Prop2 occur both in the initial state or Prop1 must 

occur before Prop2 occurs.  

The precedence relation arises exclusively of the task structure, the agent’s 

goals and capabilities. It does not arise of the fact of Prop1 being a 

precondition of any of the actions that lead from the state in which Prop1 is 

true to the state in which Prop2 is true. 

Precond(Act) Precond(Act) is the set of preconditions of the action Act, in the sense that Act 

can only be executed in a state in which all of its preconditions are true. 

PosEffects(Act) PosEffects(Act) is the set of positive effects of Act, that is, the set of 

propositions that become true in the state immediately after Act is executed. 

NegEffects(Act) NegEffects(Act) is the set of negative effects of Act, that is, the set of 

propositions that cease to be true in the state immediately after Act is 

executed. 

ValidityCondition(Act) ValidityCondition(Act) is the validity condition of the action Act. The validity 

condition of an action specifies the set of valid instantiations that can be 

applied to the action variables. 

 

Table 3. Descriptions that relate entities. Applicable to specific behaviours 

Achieved(State, Act, PropsSet)  

 

The propositions in the set PropsSet constitute the relevant effects of the 

action Act, executed in the state State. Relevant in the sense that each of them 

is either one of the agent’s goals or one of the preconditions of an action that 

actually used it in a future state of the same behaviour. 

Contributed(State, Prop, Act) Proposition Prop, true in the state State, contributed to the execution of the 

action Act in the state State, because it is one of Act’s preconditions. 

 

Of the mentioned learned concepts, the predicates Goal and Desired capture the agent’s goals; the 

predicate Action and the functions Precond, PosEffects, NegEffects, and ValidityCondition describe the 

agent’s capabilities; and the predicates MustPrecede and Mandatory represent properties of the agent task 

(considering its goals and capabilities). These last two also capture cold first-person or intrinsic meanings 

of specified properties of the environment to the agent because, if the agent is to fulfil its goals, it knows 

it must satisfy these two classes of constraints (for all behavioural instances of the same class). All the 

above concepts represent cold first-person meanings or are used to define the predicates Contributed and 

Achieved. These latter predicates also represent cold first-person meanings of specified properties of the 

environment observed by the agent and of specific actions performed by the agent in the particular 

considered behaviour.  

Some of the presented concepts can be formally defined (e.g., fluent propositions). In such cases, we 

present the axioms that can be used for their deduction. Some other concepts are not formally defined 

(e.g., goals). We have defined and implemented totally domain independent algorithms that were used by 

the agent’s observer component to learn all the described concepts. In the remainder of this section, we 

present the fundamental ideas behind each of those algorithms. 

Propositions and actions. Propositions and actions are the output of the agent’s sensors. A state is 

exactly the set of propositions observed by the agent’s sensors at a given instant. For convenience, the 

State/1 predicate holds state identifiers instead of state propositions. The function StateProps/1, applied to 

a state identifier, returns the set of propositions true in the state identified by the specified state identifier.  
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The predicate Proposition/1 is determined through the set union of all states of all behavioural instances 

of the agent. The predicate StaticProposition/1 is determined through the set intersection of all states of all 

behavioural instances of the agent. 

Knowing the set of all propositions and the set of all static propositions, it is possible to determine the 

fluent propositions using the following axiom schema: 

(Proposition(P)  StaticProposition(P))  FluentProposition(P) 

That is, the set of fluent propositions is the difference between the set of all propositions and the set of the 

static propositions. Although implementation details are not important, all the algorithms have been 

implemented in the Prolog language. The implementation of all presented deduction axiom schemata is 

remarkably similar to the actual axioms. This is illustrated by the following example corresponding to the 

axiom schema just presented. 

fluent_proposition(P) :- proposition(P), not static_proposition(P).  

The predicate Action/1 is computed through the set union of the actions observed in all behavioural 

instances of the agent. 

Agent goals: Goal/1. The agent’s goals, learned through the observation of its behaviour, are represented 

by the predicate Goal/1. Goal(PropsSet) means the agent behaves as if its goal were the conjunction of all 

propositions in the set PropSet. 

Whether or not the agent really has goals, the purpose of this research is to provide the means for the 

agent to understand its relationship with the environment as if its behaviour were guided by goals. We 

have assumed that, in case of success, the agent behaviour ends when the agent’s goals are achieved. This 

assumption is the basis for the proposed goal discovery algorithm. The set of agent’s goals is determined 

through the intersection of the sets of fluent propositions of the final states of all the observed behavioural 

instances of the same class. We have provided an example of the implementation of an axiom schema (for 

the deduction of fluent propositions). However, not all algorithms correspond to logical axioms; several 

are learning algorithms that must process all instances of the same class of behaviours. In general, those 

learning algorithms perform set operations with the entities of the domain. The following pseudo-code 

exemplifies that class of algorithms for the case of determining the goals of the agent. This time, we do 

not provide the Prolog code because procedural Prolog code is not straightforward to understand for 

non-Prolog programmers. 

All such learning procedures load the descriptions of the behaviours from files where they have been 

kept. 

% Procedure that computes the set of the agent’s goals from a list of behavioural instances 

% List_of_behaviours: observed behavioural instances, each recorded in a file 

% In the end, the fact goal(UpdatedGoals) will contain the agent’s goals. 

compute_goals(List_of_behaviours) { 

 foreach Behaviour in List_of_behaviours { 

  load_beahvior(Behaviour) % Read the behaviour from its file and load it into the program 

  % Fluent propositions of last state of current behavioural instance  

  FluentProps = last_state_fluent_props()  

  update_goals(FluentProps) 

 } 

} 
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% Update the set of goals with the newly received goals (NewGoals) 

% Updated goals are the result of the set intersection of the previous set of goals 

% with the new goals 

update_goals(NewGoals) { 

 if  goals do not exist yet then store goal(NewGoals) 

 else { 

  remove goal(PreviousGoals) % PreviousGoals becomes known 

  UpdatedGoals = setintersection(PreviousGoals, NewGoals) 

  store goal(UpdatedGoals) 

 } 

} 

Upon completion, the fact goal(Goals) will represent the set of the agent’s goals. 

It is worth noting that the presented pseudo-code does not directly correspond to the actual 

implementation. The actual program does not implement a separate process for computing goals; it 

performs several computations at once, for instance the set of observed propositions, the set of observed 

actions, and the set of goals, among others.  

Mainly for convenience, we propose the definition of a desired proposition as a proposition that is one of 

the agent’s goals. This definition leads to the following axiom schema. 

(Goal(PSet)  PPSet)  Desired(P) 

The algorithm used for determining desired propositions just needs to have access to the set of the agent’s 

goals. 

Mandatory propositions: Mandatory/1. We say that if a proposition P must precede another 

proposition and P is not one of the agent’s goals then P is mandatory. We believe it would be possible to 

identify other conditions under which a proposition should be considered mandatory but, for the moment, 

we will stick to this one.  

Knowing that a proposition is mandatory is meaningful to the agent, given that it knows that it will only 

achieve its goals if its behaviour includes a state in which the mandatory proposition holds. 

The following axiom schema captures the proposed intuition. 

(q MustPrecede(P, q)  Desired(P))  Mandatory(P)  

As it will be seen later, MustPrecede(Prop1, Prop2) means that, due to the way the world works, to the 

task structure, and to the agent’s goals and capabilities, if propositions Prop1 and Prop2 occur in a 

behavioural instance then either they both occur in the initial state or Prop1 must occur before Prop2. 

Given that MustPrecede/2 always relates fluent propositions, the algorithm for computing the predicate 

Mandatory/1 restricts the set of all fluent propositions to those that are not desired but must precede 

another proposition. 

Precedence relations: MustPrecede(Prop1, Prop2). As it has been defined, a precedence relation is 

intrinsically meaningful to the agent because it knows it cannot achieve its goals if it does not satisfy the 

learned precedence. 

We start by the definition of the precedence relation for a single behavioural instance. Then we provide 

the general definition, valid for all behavioural instances of the same class. 
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Before the definition, a note about transitivity of the precedence relation, as it is used in our research, is in 

place. Contrarily to the usual precedence concept, the precedence relation, as we have conceptualized it, 

is not transitive. It is possible to have MustPrecede (P1, P2) and MustPrecede(P2, P3) without 

MustPrecede(P1, P3). Consider the example of the following two behavioural instances, B1 and B2 in Fig 

2: 

 

Fig 2 Precedence relation in two examples 

The precedence relation shared by the two behaviours B1 and B2 consists only of the pairs <P1, P2> and 

<P2, P3>, but not by the pair <P1, P3>. If we had defined the precedence relation as being transitive, one of 

the pairs <P1, P2> or <P2, P3> would have to be excluded. The major problem then would have been to 

decide which of them to exclude. Instead of finding a criterion to exclude one of these pairs, we decided 

to define the precedence relation as non-transitive. 

Precedence in a singular behavioural instance: Precedes(P1, P2) holds for a given instance of a 

behavioural class if the fluent propositions P1 and P2 are both true in that behaviour’s initial state; or if P1 

occurs before P2, and P1 is not a precondition of any of the actions of the action sequence that leads from 

the state in which P1 is true (but not P2) to the state in which P2 is true. 

That is, if P1 and P2 are not true in the initial state, there must be a sequence of actions, ActSequence, such 

that (i) performing ActSequence starting in the state S1 leads to the state S2; (ii) P1 occurs in S1, and P2 

occurs in S2 but not in S1 or in any of the states between S1 and S2, if any; and (iii) P1 is not a member of 

the set of preconditions of any of the actions in ActSequence.  

Precedence relation, defined in a class of behaviours: MustPrecede(P1, P2) holds for a behavioural class, 

iff, for each instance of that behavioural class, b, in which both P1 and P2 occur, P1 precedes P2 in that 

behavioural instance, b: Precedes(P1, P2). To avoid situations in which the precedence relation is satisfied 

exclusively by behavioural instances in which P1 and P2 occur simultaneously in the initial state, we 

additionally impose that there must be at least one behavioural instance in which P1 actually precedes P2. 

The algorithm that learns the precedence relation by observation closely follows the described definition. 

First, we defined an algorithm that discovers the precedence relation in a single instance of the 

behavioural class. Then, we defined the algorithm that checks if the precedence relation holds in all 

behavioural instances and if there is at least one of them in which P1 actually precedes P2. This second 

component of the algorithm calls the single instance component, discarding those behavioural instances in 

which P1 and P2 do not occur at all. 

Action preconditions: Precond(Act). Precond/1 is a function such that Precond(Act) represents the set of 

all preconditions of action Act. Action preconditions are fluent propositions that must be true for the 

action to be executed. 
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The algorithm to determine the preconditions of an action performs the intersection of the sets of fluent 

propositions of all states of all behavioural instances in which the action is executed. 

Although this idea is correct, the fact that some actions are performed only too few times, even if all 

instances of the same behavioural class are considered, may lead to sets of preconditions with more 

propositions than those actually necessary for the action to be executed.  

To circumvent this problem, it was necessary to generalize actions instead of considering only the 

observed instances of the same action. For example, instead of considering every instance of a given 

action (such as the blocks world action Move(A, P1, B) - moving block A from position P1 to the top of 

block B), it is necessary to consider the abstract action (Move(block, from, to), in which block, from and 

to are variables). Using generalization of the action arguments allowed the algorithm to discover the 

correct set of action preconditions. 

In addition to solving the mentioned problem, caused by action instances that are seldom executed, 

generalization enables to use the abstract action preconditions for problems that require action instances 

that were never observed, as it is the case in planning problems. This second reason led us to use 

generalization also for determining the action effects and the action validity conditions. 

Action effects: PosEffects(Act) and NegEffects(Act). PosEffects/1 and NegEffects/1 are functions that 

return action effects. PosEffects(Act) represents the set of the positive effects of the action Act; and 

NegEffects(Act) represents the set of its negative effects. 

The action’s positive effects are the propositions that become true immediately after the action is 

executed. The action’s negative effects are those propositions that were true before the action is executed 

and cease to be true immediately after the action is executed. 

The set of positive effects of an instance of an action is determined as the difference between the set of 

propositions of the state observed immediately after the action instance has been executed and the set of 

propositions holding in the state in which the action instance was executed. 

The set of negative effects of an instance of an action is obtained through the difference between the set 

of propositions of the state in which the action instance was executed and the set of propositions of the 

state immediately after the execution. 

After determining the effects of all action instances, the algorithm performs generalization on the action 

arguments, leading to the general expression of the effects of all observed actions. 

Action validity condition: ValidityCondition(Act). The functional expression ValidityCondition(Act) 

represents the conditions that must be satisfied by variables of the action Act that make it a valid action. 

That is, it specifies the valid instantiations of those variables. For instance, the validity condition of the 

blocks world action Move(block, from, to) is that the variable block must be a block, the variables from 

and to must be places where a block can be placed, and all the variables must have different values: 

(Block(block)  Place(from)  Place(to)  block ≠ from  block ≠ to  from ≠ to) 

We emphasize that, as it was the case with preconditions and effects, it is necessary, for certain problems 

such as planning, that the action validity condition is generalized, i.e., it must specify a set of values for 

the variables that is more general than just the observed instantiations.  

The main idea underlying the algorithm used for determining a generalized validity condition of an action 

consists of finding the static predicates that cover all the observed instances of the same action. First the 

algorithm tries to apply each one-place predicate to each of the action variables and checks if all observed 

instances of the action are covered by the tried predicates. Then, the algorithm tries to apply all binary 
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static predicates to all ordered pairs of variables. Then it moves to the ternary predicates, and so on, until 

all static predicates have been tried. 

Each time the algorithm tries to use an N-ary static predicate with all N-ary tuples of variables, it uses 

first the predicates with a smaller extension as a way of avoiding overgeneralizations, which would have a 

greater likability of being wrong. 

Description of specific behaviours: Achieved/3 and Contributed/3. Achieved/3 and Contributed/3 do 

not reflect general properties of actions or propositions. They reflect the usefulness, the purpose, of 

specific actions and propositions of specific behaviours. 

The relationships Achieved(State, Act, PropsSet)  and Contributed(State, Prop, Act) represent the cold 

first-person meanings of actions and propositions of specific behaviours to the agent.  

Achieved(State, Act, PropsSet) expresses the agent’s knowledge of the reasons justifying the execution of 

a given action in a specific behaviour: achieving one of its goals or as a means to achieve a state in which 

another action could be and was actually executed. The propositions in the set PropsSet constitute the 

relevant effects of the action Act, executed in the state State of the specific observed behaviour. Action 

effect, in the sense that the action was executed in a state in which no such propositions were true leading 

to a state in which they all become true. Relevant in the sense that each of them is either one of the 

agent’s goals or one of the preconditions of an action that actually used it in a future state of the same 

behaviour. 

Contributed(State, Prop, Act) expresses the agent’s knowledge of the usefulness of a given proposition, 

true in a specific state of a specific behaviour: being the precondition of an action actually executed at that 

state. Proposition Prop, true in state State of the specific observed behaviour, contributed to the execution 

of action Act in the same state of the same behaviour, because it is one of Act’s preconditions.  

For the formalization of the axiom schema that can be used for the deduction of Contributed/3 

relationships, it is necessary to use the predicate NextState/3 that has not yet been introduced. 

NextState(S1, A, S2) relates a state identifier (S1), the action that is performed in that state (A), and the 

identifier of the new state resulting of the action execution (S2). NextState/3, as well as State/1 and 

StateProps/1, refers to states, actions, and propositions actually observed by the observer component of 

the agent. For instance, t NextState(S, A, t) means that (i) there is a state in the considered observed 

behaviour, identified by S, and that (ii) the action A was actually executed in that state, leading to another 

state whose identification is not specified. These predicates and function do not refer to possibilities; they 

refer to actually executed behaviour. 

(State(S)  PStateProps(S)  Action(A)  

 r NextState(S, A, r)  PPrecond(A))  Contributed(S, P, A) 

The positive effect P of action A1 is relevant if P is one of the agent’s goals or if P is one of the 

preconditions of a second action A2 that could be executed after A1 because that very occurrence of P was 

true when A2 was executed. If A2 has been executed in a state occurring after the one that ensues 

immediately after the execution of A1, P must be true in all states, from S until the state in which A2 was 

executed. 

The axiom schemata for the deduction of the relevant effects of an action requires the definition of the 

relation PathTrue/3 such that PathTrue(Si, Sj, P) means that P is true in all states from Si to Sj inclusive. 

 (State(S)  State(T)  S  T  r (State(r)  S  r  T  PStateProps(r))) 

  PathTrue(S, T, P) 
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The relation ≤, between state identifiers, reflects a temporal ordering among states. Being S and T two 

state identifiers, S ≤ T means that the state identified by S occurred before the state identified by T, or that 

they identify the same state. 

(State(S)  Action(A)  r NextState(S, A, r)  

 Desired(P)  PPosEffects(A) )  RelevantEffect(S, A, P) 

 r (State(S)  Action(A)  NextState(S, A, r)  PPosEffects(A)  

   t (State(t)  S  t  PathTrue(r, t, P)  a Contributed(t, P, a))) 

      RelevantEffect(S, A, P) 

PropsSet, in the relationship Achieved(S, A, PropsSet) represents the set of the relevant effects of the 

action A, executed in the state S. The following axiom schema captures the definition: 

Achieved(S, A, {p: RelevantEffect(S, A, p)}) 

The algorithms for determining the relations Contributed/3 and Achieved/3 apply the axiom schemata 

presented for their deduction, for which they need the following relations and functions: State/1, Action/1, 

Desired/1, StateProps/1, NextState/3, PosEffects/1 and Precond/1. Determining Achieved/3 also requires 

the relation Contributed/3 (or else, its definition). 

For determining the relation Contributed/3 the algorithm computes, for all states of the considered 

behaviour, the set of tuples <S, P, A> such that the proposition P, true in the state S, is one of the 

preconditions of the action A, executed in state S. 

For determining the relevant effects of an action (i.e., relation RelevantEffects/3), the algorithm computes 

all tuples <S, A, P> such that the action A, executed in the state S, 

(i) generated at least one of the agent’s goals (P); or 

(ii) generated one of the preconditions P of another action (A’) executed in a future state; P was true 

in all states from the one immediately after the execution of A until the one in which A’ was 

executed. 

These tuples are then used to generate the tuples of Achieved/3 relation, which include, in their third 

element, the set of all relevant effects of A, executed in the state S.  

3.2 Proof of Concept and Discussion 

The described definitions and algorithms were demonstrated in a simple scenario of the blocks world. 

Given their independence of the domain, the presented definitions and algorithms could have been 

demonstrated in other scenarios. 

Blocks world scenario. In this version of the blocks world (Fig 3), the agent moves blocks around until 

they are all stacked on top of each other. The place where the blocks will be stacked is irrelevant. There 

are always three equal blocks – A, B, and C – and four spaces on a table – P1, P2, P3, and P4. Each block 

may be placed on one of the table positions or on top of any other block. The predicate Place/1 is used to 

hold the places where blocks may be located. The final stack must contain the block B on top of the block 

C and the block A on top of the block B. 
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Fig 3 Example of a blocks world problem 

Two blocks cannot be placed on the same position therefore a block can only be moved to a place if the 

place is clear. Predicate Clear/1 is true for clear places. The agent can only move a block at a time, and 

only if the block to be moved does not have any other block on top of it. The predicate On/2 is used to 

specify the relation between a block and the place in which it is positioned. On(block, place) means that 

the specified block is positioned on the specified place. 

The states of the world contain only positive instances of the Clear/1 and On/2 predicates, which are 

accessible to all functional components of the agent through its sensors. The agent’s only action schema, 

Move(block, from, to), moves the specified block, from the specified place (from), to the specified place 

(to). 

We have made some simplifications in the demonstration to be described. These simplifications will be 

relaxed in future experiments. First, we assume that the agent’s observer component recognizes each time 

a final state is reached; final states are always successful. 

According to the second simplification, each action produces always the same effects. Conditional and 

imperfect actions were not considered. 

Third, we have also assumed that the agent has perfect access to all relevant aspects of the world.  

All initial configurations (i.e., 120) were automatically generated and the agent’s executor component had 

to stack the blocks in each of them, which represents 120 instances of the same class of behaviour. The 

states and the actions of each behaviour were recorded on a file. The 120 files were processed by the 

defined algorithms, which acquired the defined concepts and generated explanations of the agent’s 

behaviours. 

General results. Our algorithms have correctly discovered all the described concepts. In particular they 

discovered the sets of domain entities: propositions, fluent propositions (e.g., On(A, B), Clear(A)), static 

propositions (e.g., Block(A), Place(P1)), and actions (e.g., Move(A, P1, B)). 

The agent’s observer functional component also discovered the agent’s goals: 

Goal({On(A, B), On(B, C), Clear(A)}) 

One might argue that Clear(A) is not a goal; it is a necessity in the sense that it is true in all states of the 

described world in which the blocks A, B, and C are stacked. Although we have not solved this problem, 

we have in mind an approach that would generate experiences that would be capable of distinguishing 

true goals from mere necessities. The experiments would be designed to confirm or disconfirm goals 

under suspicion. Since the space of all possible experiments would be intractable, the mentioned approach 

should also provide a way of identifying goals under suspicion. For instance, if a certain proposition is the 
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precondition of any action that achieves one of the agent’s goals, maybe that proposition is not a true 

goal, but a necessity. 

Desired propositions are individual goals. Accordingly, the agent’s observer component correctly 

identified the following desired propositions: Desired(On(A, B)), Desired(On(B, C)), Desired(Clear(A)). 

The agent’s observer component correctly discovered that On(B, C) must be achieved before it can 

achieve On(A, B): MustPrecede(On(B, C), On(A, B)). 

In fact, the agent would never be capable of achieving its goals if this precedence relation is not observed. 

Moreover, On(B, C) is not a precondition of the actions that achieve On(A, B). The precedence relation 

arises strictly of the relation between the agent’s goals, its capabilities, and possibly the environment.  

Given the deduction axiom for the Mandatory/1 relation, the agent’s observer component didn’t identify 

any mandatory proposition because, although On(B, C) must precede On(A, B), On(B, C) is also a goal, 

and goals were not defined as mandatory. 

Only to test the deduction axiom and corresponding algorithm, we have artificially added the proposition 

GoalPrecedingProp before the proposition On(A, B) is achieved. Since GoalPrecedingProp is not a goal, 

it was identified as a mandatory proposition, which agrees with our preliminary definition: 

Mandatory(GoalPrecedingProp). 

The agent’s observer component was also capable of discovering the generalized action descriptions: 

Precond(Move(block, from, to)) = {On(block, from), Clear(block), Clear(to)} 

PosEffects(Move(block, from, to)) = {On(block, to), Clear(from)} 

NegEffects(Move(block, from, to)) = {On(block, from), Clear(to)} 

ValidityCondition(Move(block, from, to))  

(Block(block)  Place(from)  Place(to)  block ≠ from  block ≠ to  from ≠ to) 

To learn the inequality relationships (≠) between all pairs of variables, it was necessary to equip the agent 

with sensors for the equality relation (=) and provide it with prior knowledge that, for any two terms, 

(X≠Y)  (X = Y). 

The following equality relationships among blocks and among table spaces were introduced in all states 

of all agent behaviours: A=A, B=B, C=C, P1=P1, P2=P2, P3=P3, P4=P4. These relationships were correctly 

learned as static relationships. 

The algorithm was then allowed to use all static propositions together with the inequality relation and its 

definition in terms of the equality relation. This allowed the algorithm to correctly use the inequality 

relationships among all variables, when determining the action validity condition. 

Explaining specific behaviours. Achieved/3 and Contributed/3 are the relations that provide meaning to 

specific behaviours. As explained, Achieved(State, Action,   PropSet) and Contributed(State, Prop, 

Action) express the importance of specific actions and specific propositions in specific behaviours. Their 

importance is always explained in direct or indirect relation to the agent’s goals, hence Achieved/3 and 

Contributed/3, we argue, represent cold first-person meanings. They will become true first-person 

meanings when they are consciously felt by the agent, in the phenomenological sense. 

The agent’s observer component correctly explained all agent behaviours. However, it is impossible and 

useless to show the explanations of all actions of all 120 observed behaviours. Instead, we describe an 
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example behavioural instance (Fig 4) and we illustrate the explanations discovered by the agent’s 

observer component. 

 

Fig 4 Example of a behavioural instance 

We start with the Achieved/3 explanations. The agent was capable of describing the relevant effects of all 

actions, but we provide only two examples of the generated explanations. 

Achieved(S1, Move(A, B, P2), {On(A, P2), Clear(B)}) 

This means that the action Move(A, B, P2), executed in state S1, led to a state (S2) in which block A is 

located on place P2, On(A, P2), and block B is clear, Clear(B). These two effects are relevant because the 

propositions On(A, P2) and Clear(B) were not true in state S1, and because Clear(B) is one of the 

preconditions of the action Move(B, P1, C), actually executed in state S2, and On(A, P2) is one of the 

preconditions of action Move(A, P2, B), actually executed in state S3. Although Move(A, P2, B) has not 

been executed immediately in state S2, the proposition On(A, P2) held true in states S2 and S3, which 

means it was actually used by the action Move(A, P2, B). 

Achieved(S2, Move(B, P1, C), {On(B, C)}) 

This means that the action Move(B, P1, C), executed in state S2, led to a state (S3) in which the block B is 

placed on top of block C, On(B, C). This is relevant because, although On(B, C) is not the precondition of 

any of the actions executed afterwards, it is one of the agent’s goals. 

The agent’s observer component was also capable of finding meaning in the propositions that occur in the 

states of the agent behaviour. Once again, we provide two examples that illustrate the results. 

Contributed(S0, Clear(A), Move(A, C, B)) 

Clear(A), true in state S0, contributed to the action Move(A, C, B), actually executed in state S0, because 

it is one of its preconditions. 

Contributed(S0, Clear(B), Move(A, C, B)) 
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Clear(B), true in state S0, contributed to the action Move(A, C, B), actually executed in state S0, because it 

is one of its preconditions. 

Achieved/3 and Contributed/3 relationships can be chained to provide an explanation of the whole 

behaviour. 

We have also implemented a small exploratory fraction of the agent’s adopter functional component. As 

can be seen in Fig 4, the agent we have programmed to perform tasks in the blocks world is not an 

optimal agent. In fact the first two of its actions, in the depicted behaviour, should have been replaced by 

Move(A, C, P2) or Move(A, C, P4). However, if the description of the agent’s actions (Precond/1, 

PosEffects/1, NegEffects/1 and ValidityCondition/1) and the agent’s goals are used in a planning 

algorithm, the agent will exhibit a better behaviour. We have actually used a planning algorithm to which 

we have provided the agent’s goals and the descriptions of its actions. As expected, the algorithm 

produced an optimized behaviour. This means that an agent can improve its future performance after it 

understands the goals that move its behaviour, the description of its capabilities, and the properties of the 

environment. 

4 Conclusions 

We have argued that it is possible to have computer programs that develop first-person meanings of what 

they do and of what happens to them. Our belief relies on the following more fundamental one: along the 

evolution of life, there was a stage in which the most sophisticated living beings, although with brains and 

nervous systems, did not develop first-person meanings. As computer programs, they were pure rule-

following systems, in the sense that their behaviour was determined by the forces applicable to their inner 

workings. Yet, in a more recent stage of evolution, those living beings gave rise to other more 

sophisticated ones, capable of developing first-person meanings. That is, a rule-following system with no 

first-person meanings can evolve or develop into a system with first-person meanings. We note however 

that an appropriate test would be a significant advancement. 

Damásio (1999) suggests that the concerns of an individual arise only if the individual is consciously 

aware of what he or she does and of what happens to him or her. While fully adopting this position, we 

extend it by saying that cold awareness is not enough; it is necessary to feel, to be phenomenally aware of 

what one does and of what happens to us. Varela and Depraz (2005), and Colombetti (2014) also 

recognize the primordial importance of the feeling body to consciousness. First-person meanings do not 

arise of some yet to be understood magic trick of pure rule-following; they are created by our 

rationalization capabilities and by our phenomenal experience.  

From the above argument, we propose that for a program to develop first-person meanings, it has first to 

start seeing itself as a goal-directed entity, so that it can explain what happens in terms of its relationship 

with its goals. Then it must adopt the goals it learns to have, as well as acquired goal-based explanations. 

For this adoption process, (i) the program’s future behaviour must reflect the knowledge the program 

acquires about itself and about its environment and tasks; and (ii) the program must feel the importance of 

objects, events, and situations to its goals, its capabilities, and the constraints and opportunities presented 

by its environment. The research described in this article contributed to the less demanding problem of 

the agent becoming aware (in the cold sense) of its goals, its capabilities, its behaviour, and everything 

that surrounds it, and use that awareness to develop cold first-person meanings of objects, events, and 

situations. We have also made a smaller contribution to enable an agent that has acquired the mentioned 

knowledge of its goals, of its capabilities, and of the properties of the environment to use that knowledge 

to shape its future behaviour. 

Although we believe that a program may have first-person meanings comparable with ours only when it 

consciously feels, we are firmly convinced that it is possible to start right now with what could be called 

cold first-person meanings. 
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We proposed a research framework aimed at the development of agents having first-person meanings. 

The proposed framework was shaped by five research assumptions. Finally, we described the research we 

have recently done and its results. 

Tomasello and colleagues (2005) describe the way behaviours are understood by a human observer, at 

three increasing levels of sophistication: the actor behaves autonomously (he/she is the responsible for its 

behaviour) but no notion of goals is perceived by the observer, the actor is moved by goals, and the actor 

chooses plans to achieve its goals.  

Using our proposal, the agent perceives its own behaviour as goal-directed, the second level of 

sophistication proposed by Tomasello and colleagues (2005) (our agent does not perceive its behaviour as 

determined by plans, the third level of sophistication). 

For these researchers (Tomasello, Carpenter, Call, Behne and Moll 2005), understanding other persons as 

goal-directed does not happen until a certain stage of development (i.e., 9-month-olds). Although this 

does not proof our proposal, it is at least interesting that perceiving behaviour as goal-directed is not 

innate in children, which is consistent with our proposal: the agent takes some time until it discovers that 

its behaviour may be understood as if it had goals, until it understands its capabilities, until it learns the 

impact of its environment on the achieving of its goals, and until it develops first-person meanings of 

what it does and of what happens to it. 

Another piece of indirect support to the point of view presented in this article comes from Wiggins 

(2018). According to Wiggins, it seems credible that consciously experienced goals are actually 

unconsciously generated. Goals assume the most intuitive status that is usually attributed to them only 

when they enter into consciousness. This possibility seems consistent with our proposal that at first the 

agent is not aware of having goals. It becomes aware of its goals only when it discovers the goals at the 

service of which, its behaviour might have happened. 

Our research will be pursued in several ways. First of all, the algorithms proposed in this article need to 

consider all instances of the agent problem solving to be able to learn the agent’s goals, the description of 

its actions and relations between the properties of the environment, which are the basis for the 

development of first-person meanings. We want to design an incremental version of our algorithms 

following, for example, the work of Baral and Son (2017), and Hunter and Delgrande (2011; 2015) on 

iterated belief change after sequences of actions and observations. 

Then, we intend to drop some simplifying hypotheses we have used to facilitate this work. The agent’s 

observer component should not know a priori when the agent’s executor component has reached the final 

state of its task and if the task was successfully accomplished or if anything failed. The agent world 

should not be fully accessible to its sensors, and both the agent sensors and actuators should not be 

perfect. Not everything returned by the agent sensors should always exactly match reality; and not all 

agent actions should have absolutely predictable effects. All aspects of the reported research may be made 

more robust. We will also expand our work to tackle persistent goals, such as staying alive. 

It will also be important that the agent’s observer component monitors the changes in the agent’s internal 

state, in addition to just observing what happens in the external world. This might enable the agent to 

interpret what it does as a strategy to preserve or to achieve desired properties of its internal state. 

All the algorithms used in the research presented in this article, although totally domain independent, 

were especially designed for our problems. It might be insightful to approach all the learning problems 

(those in which the agent’s observer component considers all instances of the same behaviour) using 

existing general-purpose learning algorithms and compare the results with those of the special-purpose 

algorithms we have designed. 

The vocabulary we have proposed to represent the agent intrinsic understanding of what it does and what 

happens to it is still not enough. For instance, the agent does not have yet the vocabulary to express 
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astonishment, and it has little capability to express properties of the environment. We will investigate new 

concepts, to be learned by the agent, which will empower it with capabilities for a richer understanding of 

what it does and what happens to it. 

Another way this work will be pursued will be by investigating better mechanisms by which our 

computer programs may use the knowledge they acquire about themselves and the environment they 

inhabit to better shape their future behaviour. 

Finally, we will start a research endeavour on what it means for an agent to consciously feel what it does 

and what surrounds it. A rigorous test must be developed, but its design requires a deeper understanding 

of what is feeling in the phenomenological sense. 
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