

SARDANA A Next Generation PON with extended reach and debits

António Teixeira

Instituto de Telecomunicações, Universidade de Aveiro (UA), Aveiro, Portugal

- SARDANA
 - Presentation
 - General motivations
 - Consortium
 - Network general presentation
 - Driving forces (Gpon actual...)
 - Technological solutions
 - Transmission
 - Remote nodes
 - Architectural solution coverage
- Conclusions

SARDANA

Scalable Advanced Ring-based passive Dense Access Network Architecture"

Activity: *ICT-1-1.1 - Network of the Future* Grant agreement n.: *217122 (SARDANA)* STREP: *2008-2010, 2.6 MEuro*

www.ict-sardana.eu

Increasing complexity

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

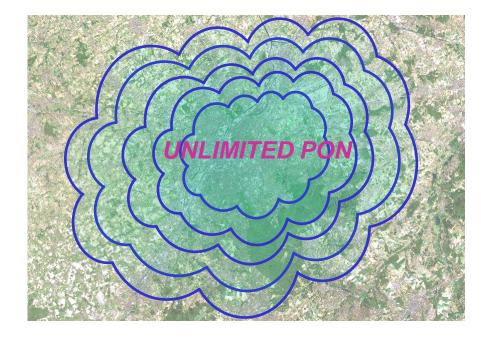
teixeira@ua.pt

Who is doing it?

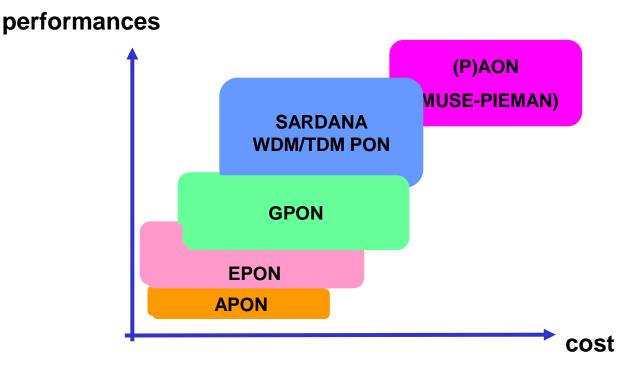
	Participant name	Short name	Country
1	Universitat Politecnica de Catalunya	UPC	Spain
2	France Telecom / Orange	FT	France
3	Tellabs	TELLABS	Finland
4	Intracom S.A. Telecom Solutions	IntraCOM	Greece
5	Instituto de Telecomumicações	IT	Portugal
6	High Institute of Communication and Information Technology	ISCOM	Italy
7	Research and Education Laboratory in Information Tech.	AIT	Greece

Who is doing it?

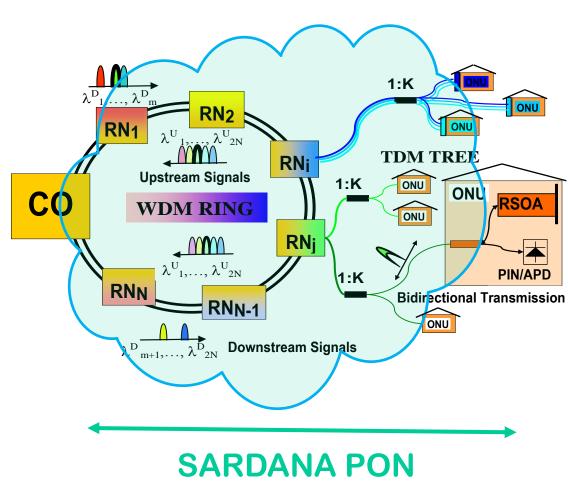
Profiles and expertises	UPC	<u>FT</u>	<u>TLB</u>	<u>ICOM</u>	<u>IT</u>	<u>ISC</u>	<u>AIT</u>
Netw.&Serv. Operator		Х					
PON equipment provider			Х	plann ed			
Service platform provider				Х			
WDM-PON expertise	Х	Х					
Monitoring techniques					Х	Х	
Impairment compensation	Х						Х
Semiconductor photonics	Х	Х			Х		
Remote amplification	Х				Х	Х	
High bit-rate systems					Х		Х


UPC:	Coordination, ONU, RN subsystems.
FT:	Architecture definition, ONU, Field-trial, Technical management, Techno-Economic studies.
Tellabs:	GPON equipment, MAC, lab-demonstration.
IntraCOM:	Management &Control plane, Service platform.
IT:	Monitoring system, non-linear transmission.
ISCOM:	Remote nodes, non-linear amplification.
AIT:	Electronic PON impairment compensation, Techno-Economic studies.

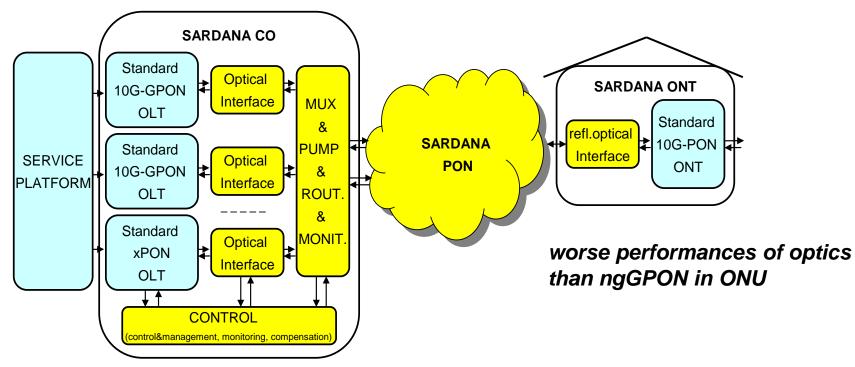
Fundamental goals


- Maximize:
 - N. served users (>1000 per fibre ring)
 - Served area (100Km)
 - Served capacity (10Gbit/s x 32)
- Minimize:
 - Infrastructure COST
 - N. Fibres / cables
 - N. Cabinets
 - N. Active areas
 - Civil work investments
- Musts:
 - Passive external plant
 - Single fibre access
 - Scalability and upgradeability
 - Compatibility with g/e-PON MAC
 - Robustness:
 - Protection
 - Monitoring and electronic compensation

- SARDANA aims at achieving:
 - higher performances (L, ONUs, BW, resilience) than GPON,
 - but at a <u>similar cost</u> (passive PON, reflective ONU, etc).



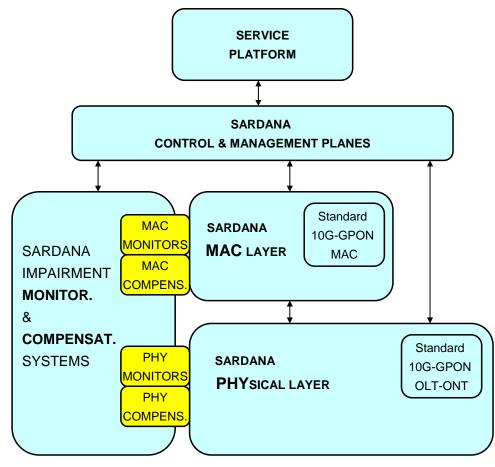
SARDANA architecture



- Resilient trunk
- Fully passive
- Hybrid:
 WDM Metro ring
 TDM Access trees
- Cascadable remote nodes
- Colourless ONU
 - RSOA
 - Tunable laser
- New adoption of remotelypumped amplification
- Multi-operator
- Based on GPON, but transparent.

better optics than GPON in OLT

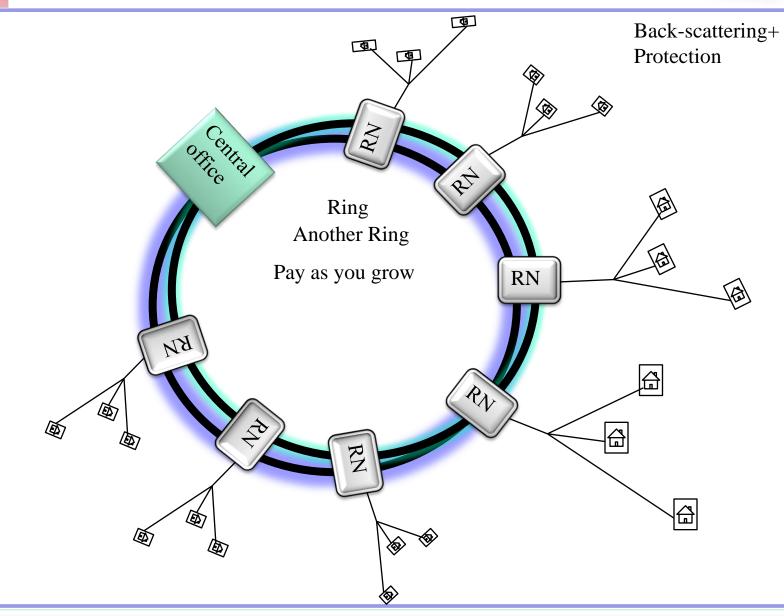
- 1. Added: standard GPON (MAC) + SARDANA
- 2. Integrated: adapted GPON + SARDANA



MAC, the Control and Management planes

FUNCTIONALITIES:

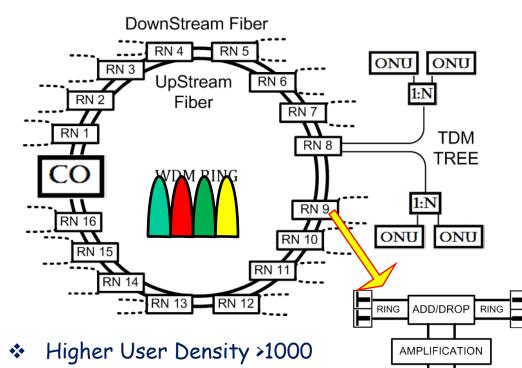
- Resilience
- Multi-operator capability
- Multi-rate coexistence
- Control&Management planes
- 10G DBA MAC
- In-service monitoring
- Impairment-aware routing
- Eye-safeness



Functional layered model of SARDANA.

→ Multi-layer system

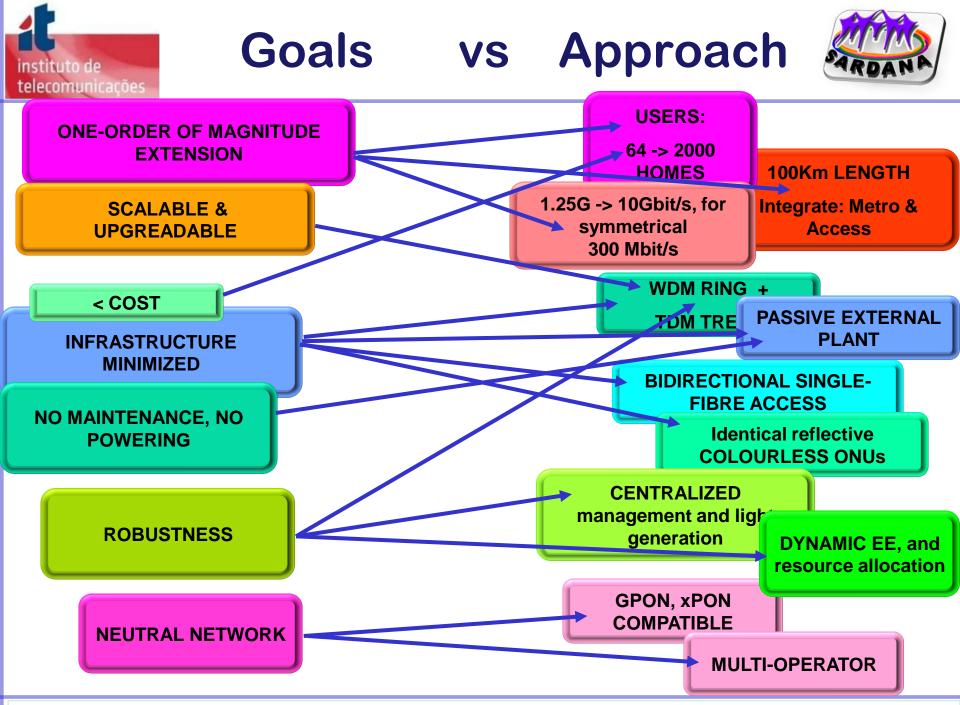
The evolution towards...


NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

instituto de

telecomunicações

instituto de telecomunicações Sardana...

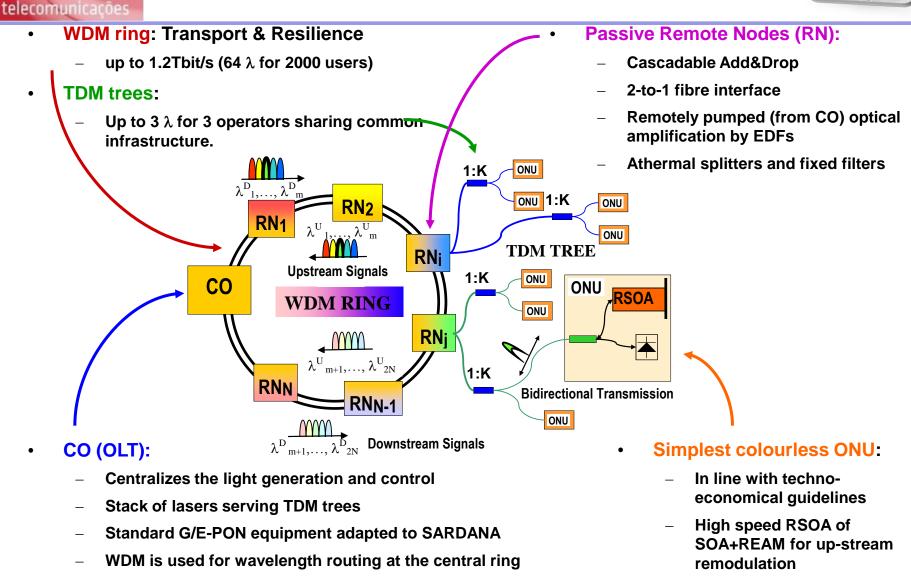


- Long reach 100km
- Symmetric 100Mbps

- Centralized light generation
- Passive Outside Plant
- Scalability
- Resiliency
- Traffic Balance
- Multi Operability
- Remote Amplification

FILTERING

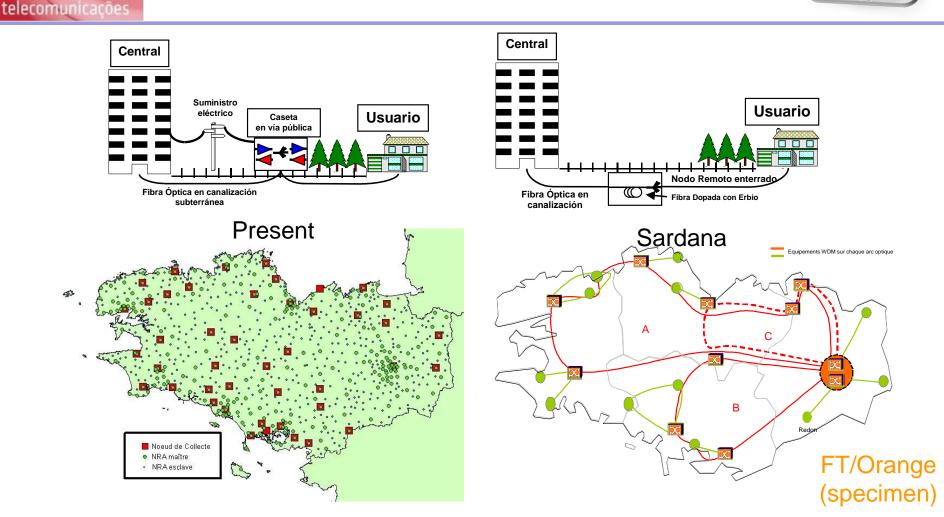
💓 tree 🏷



NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

teixeira@ua.pt

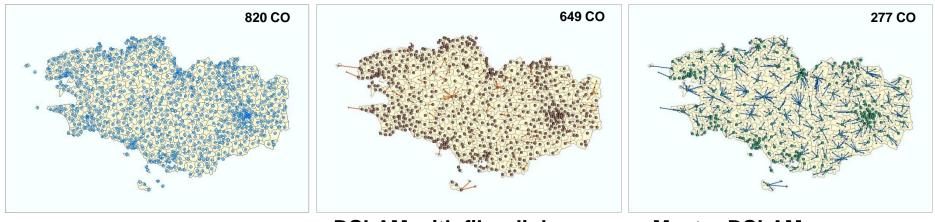
basic modules



DBA techniques for TDM trees.

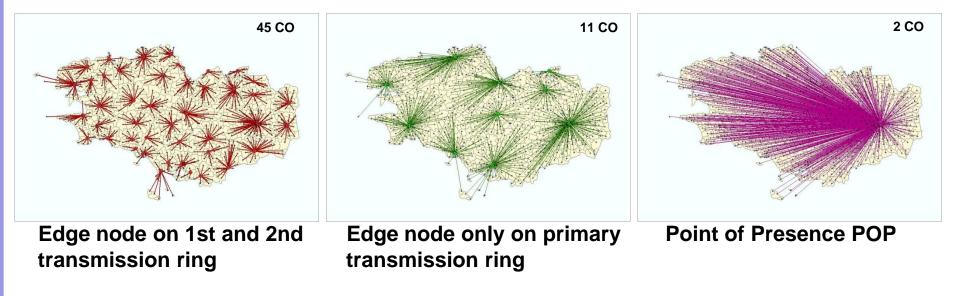
instituto de

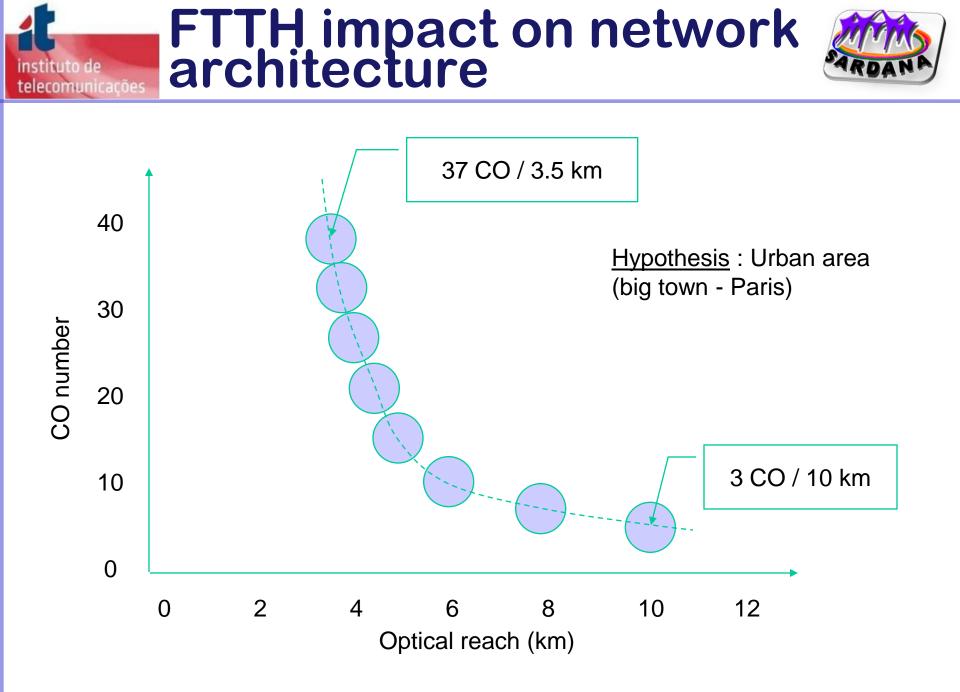
Impact over infrastructure


- Elimination of maintenance in external fibre plant.
- Reduction of the number of active central offices.
- Integration: Head-end & Metro node

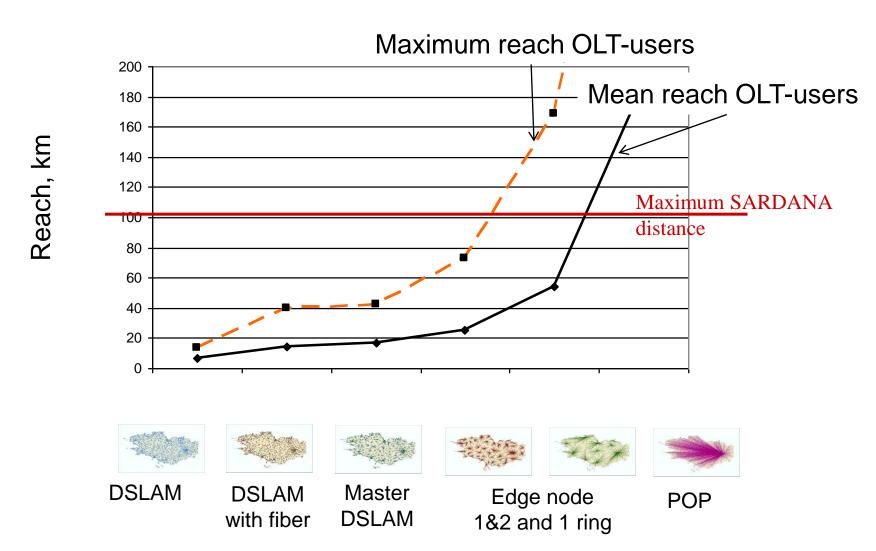
NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

instituto de

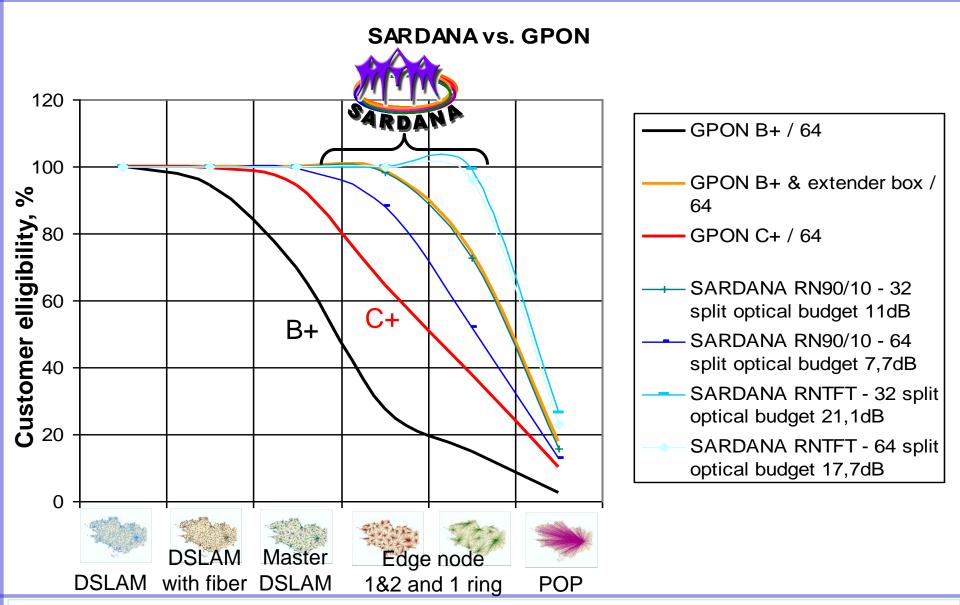

Impact of OLT location


DSLAM with fiber link

Master DSLAM

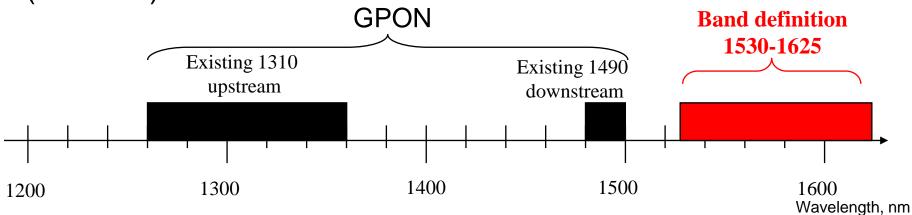

instituto de

telecomunicações

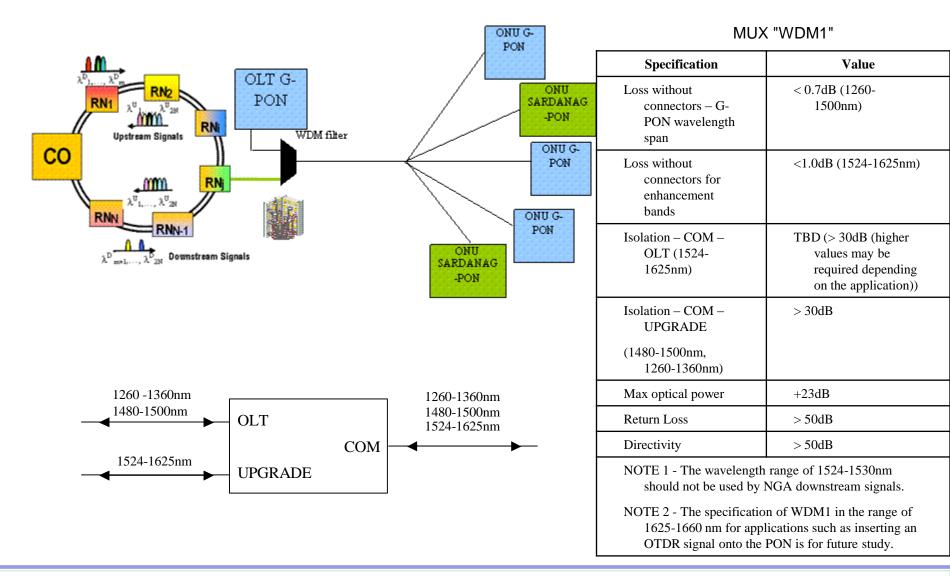

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

teixeira@ua.pt

ELIGIBILITY


NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

GPON evolution



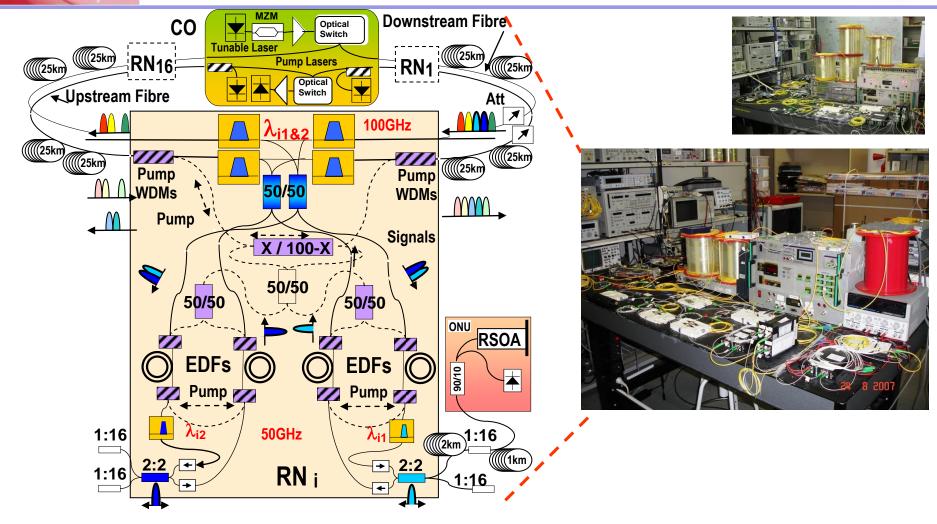
- Migration topics :
 - We are focussing on a fibre lean scenario where Next Generation Access solution coexists on same fibres as GPON
 - Maximum re-utilization of optical infrastructure installed (ring and ODN)
- Wavelength plan allocation Use the WDM to achieve system generation overlay (G.984.5).

SARDANA & G-PON G.984.5 telecomunicações

instituto de

Standardization position

- Standardization : IEEE 10GEPON : (standard for end of 2009)
 - 3 classes (20 24 29 dB)
 - Wavelength allocation :
 - Upstream : 1270nm [1260 -1280nm]
 - Downstream : 1577nm [1575-1580nm]
 - SARDANA could use IEEE chipset
- FSAN / ITU : (standard ITU G.987 for 2012)
 - SARDANA will be present in the white paper NG-PON2 of the FSAN (published beginning of 2010).



How are we evolving towards the solution?

The network on a table..

- CO: Laser, MZM, Pump Laser
- **ONU:** Reflective SOA + Detector

instituto de

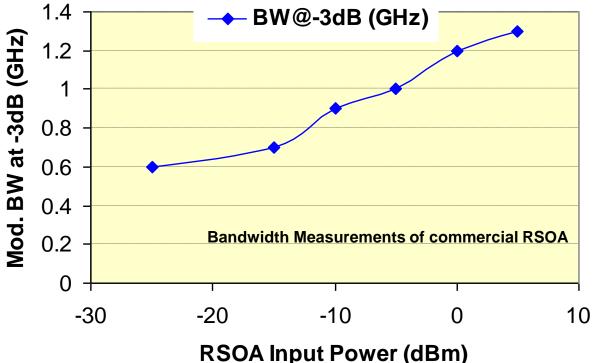
telecomunicações

Two main scenarios have been considered

Urban Rural	Hi		5 dBm 8 dBm
RN_FILTER_drop_TYP*		cost targets	ver.
RN_FILTER_bypass_TYP		cost targets	in two
RN_FILTER_bypass_pum	1		n
Splitter losses (50%, 50% basic unit)	3.2	dB Cases. O dbitt and 10 dbi	11
RSOA Gain	21	dB	
RSOA NF	10	dB	
ONU_splitter	50/50	%, %	
*: detailed analysis at Deliverable Sv 1.3	>		

*: detailed analysis at Deliverable Sy 1.2

- ONU
 - Collourless
 - Cheap
 - Compatible with GPON
- Solutions
 - SROA
 - Gain
 - Reflective (single fiber)
 - Tuneable laser
 - No remodulation
 - Highr stability at the ONU
 - Other


*: R.I. Martinez et al, "A Low Cost Migration Path Towards Next Generation Fiber-To-The-Home Networks", ONDM 2007, LNCS 4534, pp 86-95 (2007)

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

ONU represents about 80% of network cost* (excluding P2P)

RSOA-Colorless ONU

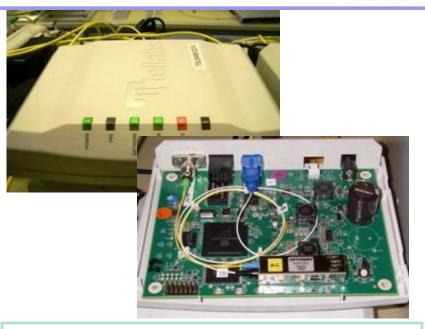
- Potential low cost device
- Input Signal & E/O BW trade-off:
 - Bandwidth limited at small signal levels
- Measurements at: 20 °C, 80 mA, 1550 nm
 - 15dB gain at -15dBm input power, but only 0.7GHz BW.
 - Gain saturation is required (~0dB gain) for 1.3GHz

instituto de

telecomunicações

• At the ONU, the presence of Semiconductor Optical Amplifiers (Reflective), for reuse of the wavelength determine a deep study in terms of current/input power in order to understand the better AO (AREA of OPERATION).

SOA		optical input power						optical input power			
		low P _{in} < -15 dBm	medium -15 dBm < P _{in} < -5 dBm	high P _{in} > -5 dBm		RSOA		low P _{in} < -15 dBm	medium -15 dBm < P _{in} < -5 dBm	high P _{in} > -5 dBm	
	high I _{bias} > 100 mA	high gain, NF high for lower input powers, ER stays the same	gain decreases due to saturation but low NF, ER is erased	low gain, NF increases with input power level, ER is removed			high I _{biæ} > 100 mA	high gain, NF Iow, ER is kept	gain decreases quickly due to saturation, NF increases, ER is erased	low gain, saturation, NF high, ER is removed, strong patterning	
bias current	medium 60mA < I _{bias} < 100 mA	moderate gain, NF moderate to high, ER is kept	gain gets lost, NF moderate, ER decreases strongly with higher input power	low gain, higher NF, ER is removed	d		medium 60mA < l _{bias} < 100 mA	gain is still quite high, NF moderate, ER stays the same	gain gets lost, NF moderate and increases, ER decreases strongly with higher input power	low gain, saturation, high NF, ER is removed, strong patterning	
	low 30mA < l _{bias} < 60 mA	quite low gain, higher NF, ER is not reduced	gain low, NF higher, increases with the input power next to erasing the ER	no gain, high NF, ER gets removed			low 30mA < I _{bias} < 60 mA	low gain, higher NF for lower currents, ER is not reduced	gain low, NF quite high, increases with the input power next to erasing the ER	no gain, high NF, ER gets removed, strong patterning	



ONU status

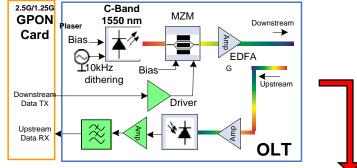
Colourless ONT & OLT

- Tellabs Modified OLT and ONU optics in Tellabs 1134 system
- Integrated RSOA based ONU for the first Demo at 1.25Gbps (Optoway module in photography) from France Telecom.
- 3-5Labs has provided higher BW SOA/REAM that have been mounted, tested and adapted for 10G at UPC.

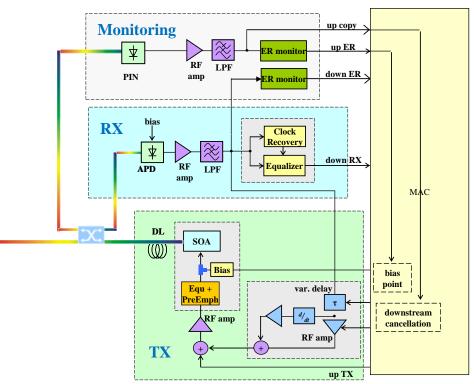
GPON ONT first prototype from Tellabs for 2.5/1.25Gbps using RSOA modules from France Telecom

First tests of 3-5Labs SOA/REAM chips

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)



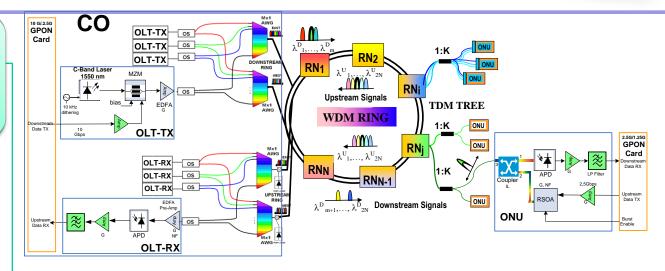
ONU OLT



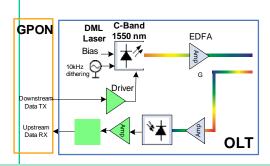
Colourless ONT (end-user terminal)

- Reflective-ONU optical transceiver:
 - preferred option as cheapest available choice for the WDM-PON
 - Main drawbacks:
 - Full-duplex with wavelength reuse in down&up-stream
 - -> Solution: study of the possible optical modulation formats compensating techniques like: downstream ER cancellation at ONU, wavelength dithering and adaptive electronic equalization.

(*) 10kHz dithering for Rayleigh combating



ONT OLT



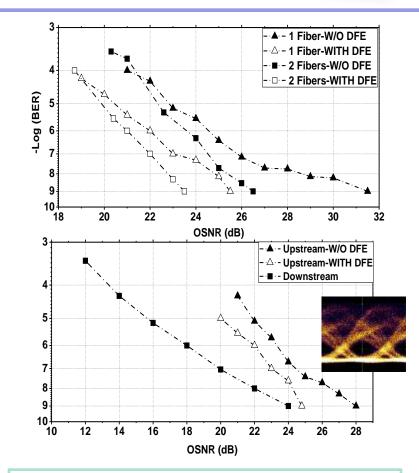
Colourless ONT & OLT definition

- OLT Optical Modules:
 - Laser source dithered for RB and reflections impairments mitigation
- Implementations:
 - The OLT based on Direct Modulated Laser (DML):
 - Cost-effective
 - Rayleighbackscattering tolerant (trade-off of dispersion)
 - OLT based on a external modulated laser
 - Higher performance
 - Lower CD impairments.

2 OLT TX implementation considered: a) Low-cost DML; b) High performance external modulated laser

a) Detailed scheme of a OLT based on a Direct Modulated Laser (DML)

First prototype of the optical modules of 2.5 Gbps OLT based on DML



ONT OLT

Colourless ONT (end-user terminal)

- Reflective-ONU optical transceiver:
 - Main drawbacks:
 - RSOA electro-optical bandwidth limitation
 - -> Solution: off-set optical receiver filtering and DFE/FFE equalization at the OLT
 - **low-cost RSOAs** rated for **1.25Gbps** operation that can be **used** in future PONs modulated **at 2.5 and** even **10 Gb/s in upstream** [1]
 - By removing the down-stream crosstalk, the distance has been increased **up to 70Km** [2].
- [1]: M. Omella et al., "Full-Duplex Bidirectional Transmission at 10 Gbps in WDM PONs with RSOA-based ONU using Offset Optical Filtering and Electronic Equalization", OFC'2009.
- [2]: I. Papagiannakis, et al., "Investigation of 10-Gb/s RSOA-Based Upstream Transmission in WDM-PONs Utilizing Optical Filtering and Electronic Equalization," IEEE Photon. Technol. Lett., vol. 20, no.24, pp. 2168-2170 December 2008.

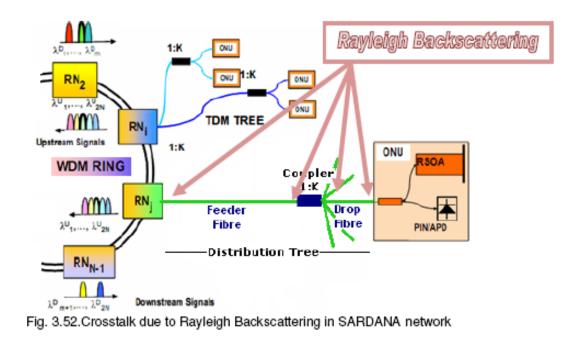
(Up): Upstream 10Gb/s BER versus OSNR with 25 km bidirectional and two fibres of 25 km unidirectional .

(Down): BER versus OSNR with 12 km bidirectional and 2x25 km unidirectional.

- In order to remodulate we have to
 - Have convenient modulation format
 - Power in the '0's
 - Cheap to achieve remodulation
 - Receiver sensitivity of -25dBm

Modulation Formats

MOD. FORMAT (2.5G/10G)	BtB Sensitivity Penalty (dBm)			CD (Km) (1dBpen, G652)	eBW	COST	Comment	
IM (REF., 2 lambdas)	â l	2 lambdas		CW		t)		ER=30dB,
2.5G	-3.2/-5		17.7	18*	<800**	2G	LOW	Sensit27.0 dBm
10G	OREF	0.400	19,42	18.9	48,7	8G	LOW	Sensit23.8 dBm
+ FEC	-3/-5					8G	LOW-MED	
+ EE		-		-		6G	MED	
IM-ER 3dB	S	0	1		19 - E			
10G	5.6	1,78	28.7	29.9	40,6	8G	LOW	
IM-ER cancellation		ER = 0dB	penalty	over ER=3	dB w/o canc.			RSOA BW limit / REAM req.
2.5G:SDA, 10G:SOA+EAM		2.5G/10G	2.5G	10G				
10G, ERdown = 3dB	4.85	1.0/0.2	-0,2	-2,3	40**	8G	MED	ER:3 to 0.8dB(2.5G) & 0.4dB(10G)
10G, ERdown = 6dB	2.05	2.2/0.2	-1,8	-4,9	40**	8G	MED	ER:6 to 1.2dB(2.5G) & 0.7dB(10G)
10G, ERdown = 10dB	0.6	7.6/4.4	2,35	-2,15	40**	8G	MED	ER:10 to 1.0dB(2.5G) & 1.3dB(10G)
IM(DML)-ER 6dB		12	-		ch			2019년 - 1919
2.5G	0						Fiter at OLT	
10G	0				10 / 80 (w Filter	r) Filter	at OLT + EE at	ONU
SSB	2, 3, 6dB ER	2dB ER Dw	2, 3dB				-	
10G	2.6; 1.3; -0.7	6,6	35.8 34.4		62,5	8G	MED (OLT)	Dual-Arm MZM + Hilbert Transf
Manchester SSB-IM	8		2	2	2 B			
10G	-1,08	2.7*			40**	15G	MED (OLT)	
SCM-DP SK			1				100 C 120 C 120	
25	-2,8	0,5	34	21,3	45**	7.5G	LOW	
10	0.4	1	(a)	21	5**	27.5G	HIGH	high s peed electronics
SCM-QP SK	in the second	11						
10	0.3	1	1 3 -		8 300 3	18.8G	HIGH	high s peed electronics
oPSK								
10		0		2		8G	HIGH	MZI at ONU
oF SK 10	5			-	1	7G	MED	M2 (marks BCO) and
10		-			28	76	MED	MZI (maybe RSOA cav.)
	0.35,0.55,0.7	and the second se	0.35,0.55,0					small ER by beitx
Op. Duobinary	1.1, 4.4, 6.1	high	27.5,30.8,3	32.6	>62.5**	8G	MED	non-linearity sensitivity
EI. Duobinary 10G	6	high?	-		10	4G	LOW	10G
Coherent oPSK /oPSK	6.7	0		-	24	20G	HIGH	Sensit.: -30.5 dBm
IM+chirp+offsetF		high?			40*	4G	MED	RSOA chirp variance?
IM+chirp+offsetF+EE		high?			70*	3G	MED	


Table 7.1: Comparison of different modulation formats

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

teixeira@ua.pt

• The relation between the Signal and the Rayleigh backscattering (oSRR), in a determined point of the network, is very important in the SARDANA scenario.

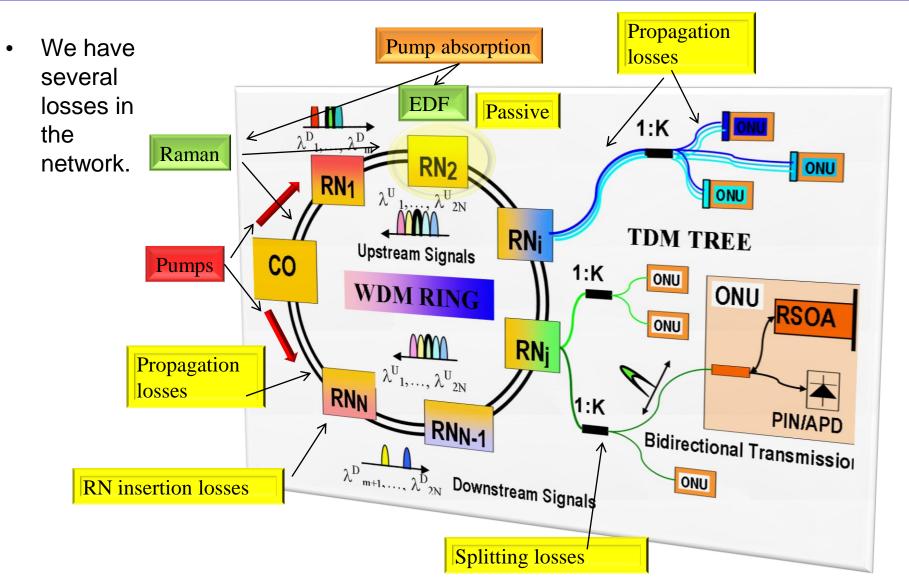
 Considering the Network Parameters, a desidered value for the oSRR has been set to >20 dB.

Rayleigh BackScattering

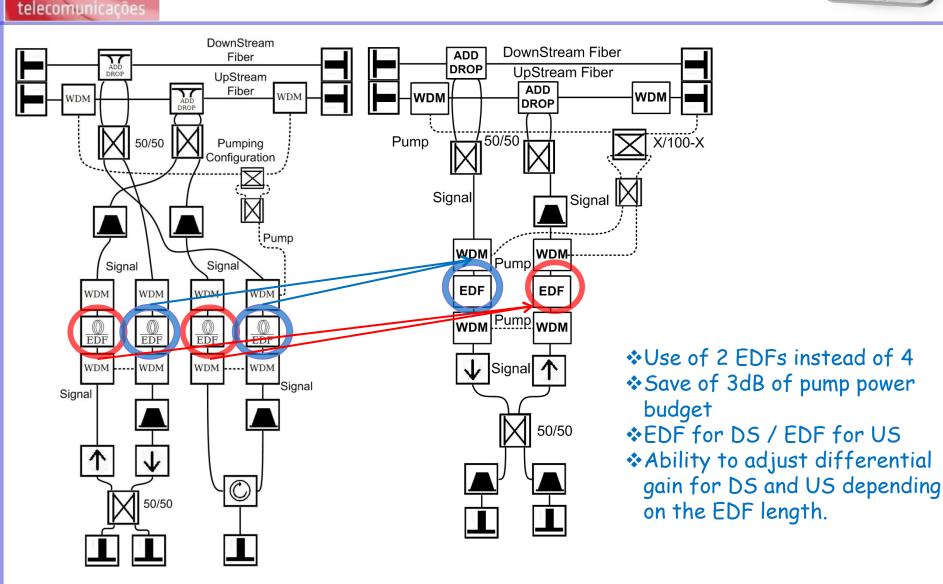
• RB effect is most relevant and degrading at the RN input.

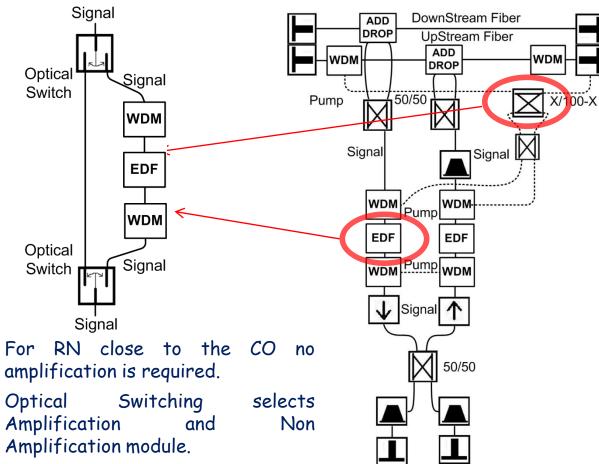
0.22	2 dB/Km 5 dB/Km 1km splitter 9 16	Spliting Ratio Splitter_losses Tree_loss ONU-Gain Drop (Km) 1	ONU in	dB R dB O	SOA Gain SOA NF NU_splitter 5 NU out	21 dB 10 dB 0/50 0 dBm
0.25 9km+splitter1x16+1 Feeder (Km) 19 -4.18	5 dB/Km Ikm splitter 9 16	Tree_loss ONU-Gain Drop (Km)	17.2 15 ONU in	dB O	NU_splitter 5	0/50
km+splitter 1x16+1 Fee der (Km) 19 -4.18	1km splitter) 16	ONU-Gain Drop (Km)	15 ONU in			
Feeder (Km) 19 -4.18	splitter) 16	Drop (Km)	ONU in	dB O	NU out	0 dBm
19 -4.18) 16					
-4.18		1	10			
	-12.8		-15			
R-out		-0.22	-15			
R-out				_		
	COUPLERin	COUPLERout	ONU-in	0	SRR Downstream	30.08
2.2	2 -1.98	-14.78	-15	0	SRR Upstream	15.93
R-in	COUPLERout	COUPLERin	ONU-out			
-17.2	-13.02	-0.22	0			
3 Coupler Dw	RB-RN (input)	RB-ONU (input)	RB Coupler Up			
-48.71	-33.49	-45.17	-30.39			
-48.71	-33.13	-45.08	-30.39			
SRR Coup-Dw	OSRR RN	OSRRONU	OSRR Coup-Up			
46.73	3 15.93	30.08	30.17			
O +0dBm		Tree_fiber		3 Km	ONU_input_goal	-15 dBr
0) dBm	Spliting Ratio	(54	RSOA Gain	21 dB
0.22	! dB/Km	Splitter_losses	19	.2 dB	RSOA NF	10 dB
0.25	dB/Km	Tree_loss	19.	86 dB	ONU_splitter	50/50
km+splitter1x64+	0.1km	ONU-Gain		15 dB	ONU out	0 dBn
Feeder (Km)	splitter	Drop (Km)	ONU in			
2.9) 64	4 0.	.1 -	15		
-0.638	-19.7	2 -0.02	22 -	15		
-out	COUPLERin	COUPLERout	ONU-in		oSRR Downstream	n 39.95 dB
4.86	4.222	2 -14.97	/8 -	15	oSSR Upstream	16.21 dB
-in	COUPLERout	COUPLERin	ONU-out			
-19.86	5 -19.222	2 -0.02	22	0		
-	an and the state					
Coupler Dw	RB-RN (input)	RB-ONU (input)	RB Coupler Up			
Coupler Dw -60.17						
				87		
	3 Coupler Dw -48.71 -48.71 SRR Coup-Dw 46.73 e 3.CI.: Theoref O +0dBm 0 0.22 0.25 km+splitter1x64+ Feeder (Km) 2.9 -0.638 -out 4.86 -in	3 Coupler Dw RB-RN (input) -48.71 -33.49 -33.13 SRR Coup-Dw OSRR RN 46.73 15.93 a 3.Cl.: Theoretical calculus 0 dBm 0.22 dB/Km 0.25 dB/Km 0 dBm 0.25 dB/Km %m+splitter1x64+0.1km splitter Feeder (Km) splitter -0.638 -19.2 -out COUPLERin 4.86 4.222 -in COUPLERout	B Coupler Dw RB-RN (input) RB-ONU (input) -48.71 -33.49 -45.17 -48.71 -33.13 -45.08 SRR Coup-Dw OSRR RN OSRR ONU 46.73 15.93 30.08 e 3.Cl.: Theoretical calculus for Rural scena O +40.73 O +40.73 15.93 -45.73 0 -45.73 15.93 30.08 e 3.Cl.: Theoretical calculus for Rural scena O +40.73 15.93 O +00 Bm Tree_fiber 0 -45.74 0 -0.25 -0.74 Splitter_losses -0.25 0.25 -0.74 -0.74 -0.02 -0.02 -eeder (Km) splitter Drop (Km) -0.638 -19.2 -0.02 -out COUPLERin COUPLERout -4.86 4.222 -14.97 -in COUPLERout COUPLERout -0.02 -14.97	B Coupler Dw RB-RN (input) RB-ONU (input) RB Coupler Up -48.71 -33.49 -45.17 -30.39 -48.71 -33.13 -45.08 -30.39 -48.71 -33.13 -45.08 -30.39 SRR Coup-Dw OSRR RN OSRR ONU OSRR Coup-Up 46.73 15.93 30.08 30.17 e 3.CI.: Theoretical calculus for Rural scenario O Free_fiber 0 dBm Spliting Ratio 6 0.22 dB/Km Splitter_losses 19 0.25 dB/Km Tree_loss 19.3 Km+splitter1x64+0.1km ONU-Gain 2 -0.638 -19.2 -0.022 -3 -out COUPLERin COUPLERout ONU-in 4.86 4.222 -14.978 -3	B Coupler Dw RB-RN (input) RB-ONU (input) RB Coupler Up -48.71 -33.49 -45.17 -30.39 -48.71 -33.13 -45.08 -30.39 -48.71 -33.13 -45.08 -30.39 -48.71 -33.13 -45.08 -30.39 SRR Coup-Dw OSRR RN OSRR ONU OSRR Coup-Up 46.73 15.93 30.08 30.17 a S.CI.: Theoretical calculus for Rural scenario 0 dBm Spliting Ratio 64 0.22 dB/Km Splitter_losses 19.2 dB 0.25 dB/Km Tree_loss 19.86 dB km+splitter1x64+0.1km ONU-Gain 15 dB 64 0.1 -15 -0.638 -19.2 -0.022 -15 -0.538 -19.2 -0.022 -15 -out COUPLERin COUPLERout ONU-in 4.86 4.222 -14.978 -15 -in COUPLERout COUPLERin ONU-out -15	B Coupler Dw RB-RN (input) RB-ONU (input) RB Coupler Up -48.71 -33.49 -45.17 -30.39 -48.71 -33.13 -45.08 -30.39 -48.71 -33.13 -45.08 -30.39 SRR Coup-Dw OSRR RN OSRR Coup-Up 46.73 46.73 15.93 30.08 30.17 e 3.CI.: Theoretical calculus for Rural scenario ONU_input_goal 0 dBm Spliting Ratio 64 0.22 dB/Km Splitter_losses 19.2 dB 0.25 dB/Km Tree_loss 19.86 dB 0.25 dB/Km Tree_loss 19.86 dB 0.25 dB/Km Tree_loss 19.86 dB 0.82 dB/Km ONU-Gain 15 dB Feeder (Km) splitter Drop (Km) ONU in 2.9 64 0.1 -15 -0.638 -19.2 -0.022 -15 -out COUPLERin COUPLERout ONU-in 4.86 4.222 -14.978 -15 -in <

Table 3.C.: Theoretical calculus for Urban scenario

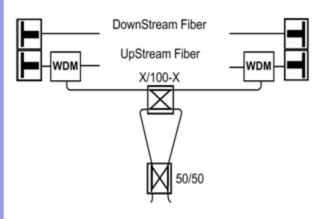

• Mitigation techniques can be: laser linewidth broadening, cross remodulation (C-L bands), FEC, chirped modulation, Carrier Suppressed sub carrier amplitude modulated phase shift keiyng, frequency ditering, et alt

instituto de

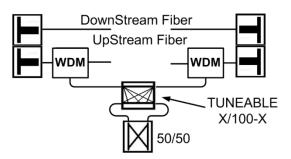

telecomunicações



Extra efficiency can be achieved.


*

**

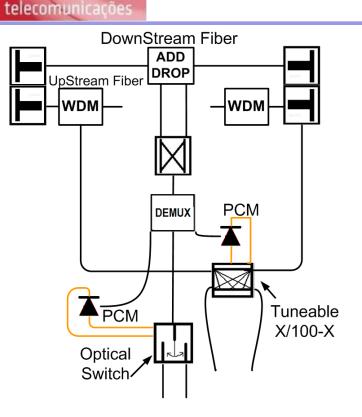

instituto de

telecomunicações

DownStream Fiber UpStream Fiber WDM X/100-X Optical Switch V/100-Y 50/50

Static Coefficient

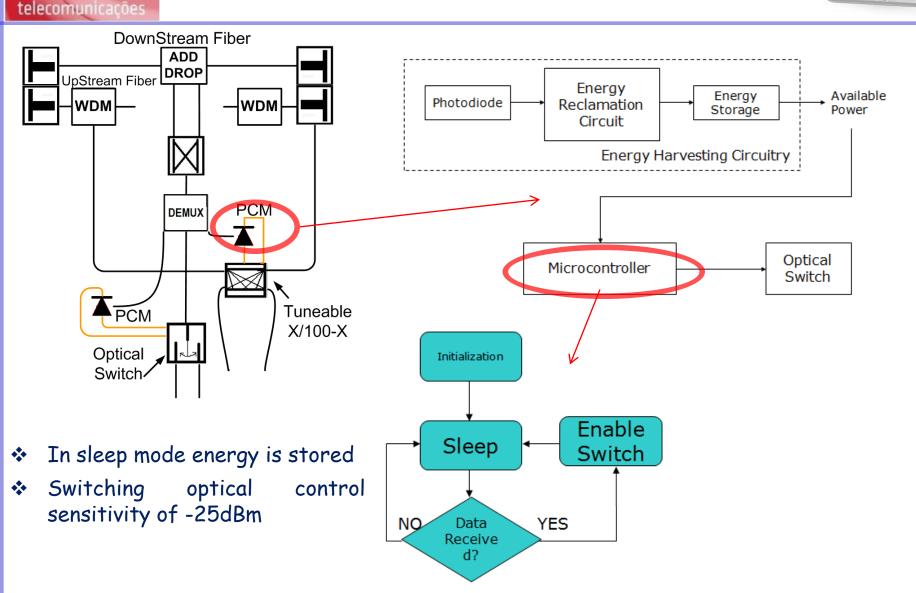
instituto de

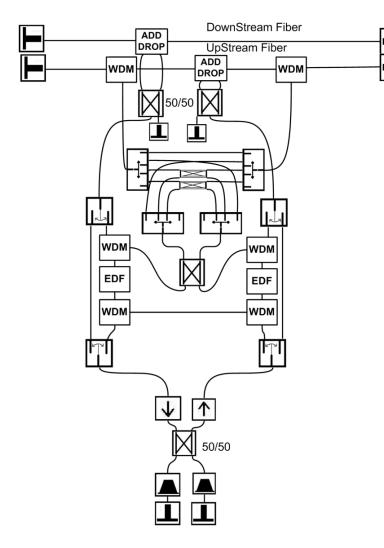

telecomunicações

- Excess Power Drop
- Reduced Efficiency

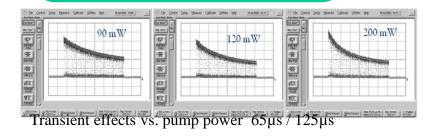
- Dual Case Reconfigurability
- Improved Efficiency
- Extra Loss (switches)

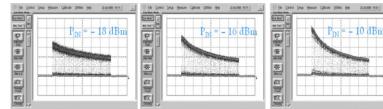
- Multi Case Reconfigurability
- ✤ No Excess Pump Power Drop
- ✤ Higher Efficiency




- In sleep mode energy is stored
- Switching optical control sensitivity of -25dBm

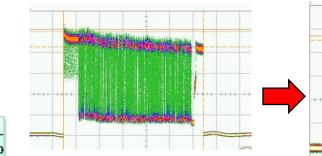
- The key is an Optical Power Harvesting Module
- Optical power is converted and stored electrically
- Electrical Power is responsible for powering the Optical Switch.
- Switches can be remotely controlled from the CO
- No local power source is necessary
- The network has a truly outside passive plant.

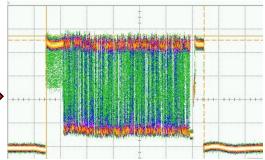



RN impairments

Possible impairments at the RN:

- Insertion losses
- Central wavelength stability
- Reflections
- EDF gain transients ->


Transient effects vs. signal input power 65µs / 125µs

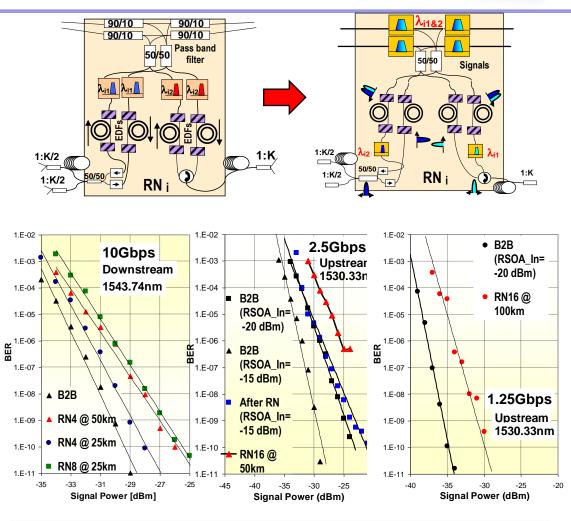


$$G'(0) = \frac{[G(\infty) - G(0)]}{\tau_0} \left[1 + \sum_j \frac{P_{out}(\lambda_j)}{P_{IS}(\lambda_j)} \right]$$
$$P_{IS}(\lambda_j) = \frac{h\nu S}{[\sigma_a(\lambda_j) + \sigma_e(\lambda_j)]\Gamma_1}$$

Gain transients mitigation

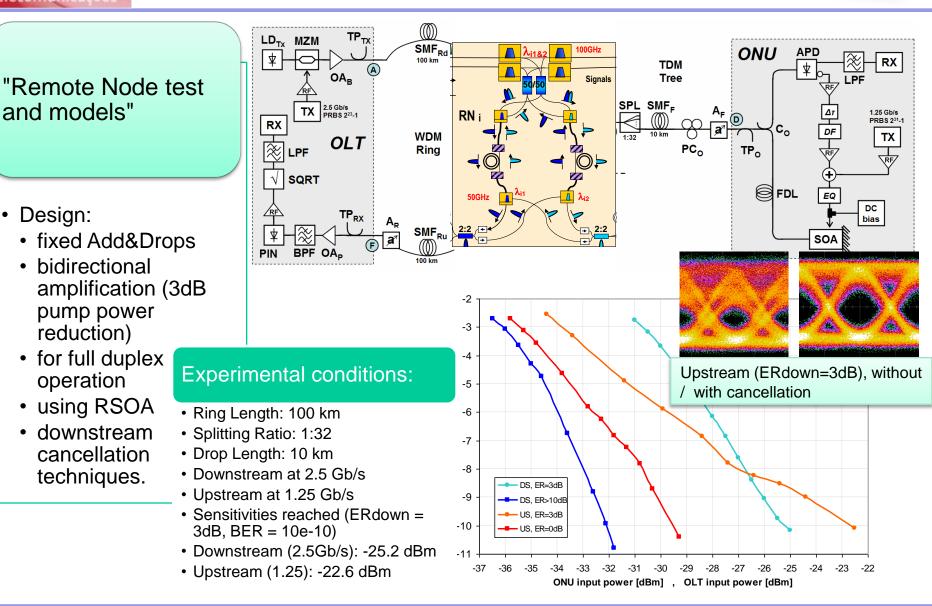
- Automatic Gain Controlled
- Optical Feedback Loop
- Larger effective Area EDF
- Burst mode (Upstream) gain stabilization by continuous stream signal (Downstream)

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)



However it works...

"Remote Node test and models


- Design, construction, modelling and characterization of Remote Node designs based in fixed Add&Drops.
- Proof-of-concept experiments using a RSOA based ONU [1]:
 - Downstream @ 10 Gbps halfduplex 1024 ONUs and 50 km (corresponding to 1024 ONUs &100km in non fibrefailure case).
 - Upstream @ 2.5 Gbps for 1024 ONUs along 50 km, even for the worst conditions of fiber cut.
 - Upstream @ 1.25 Gbps 1024 ONUs along 100km (for worse resilience case of fibre failure) at 1.25Gbps.

[1]: J.A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, V. Koratzinos, "Scalable Extended Reach PON", paper OTHL2, OFC/NFOEC 2008.

However it works

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

- Noise sources from DFA, RAMAN and remote amplification techniques fully explored. Gain, NF and oSNR explored for Individual configurations as:
 - In-line EDF
 - Drop EDF
 - Raman
- Combined configurations require combination of different models:
 - Raman + In-line EDF
 - Raman + Drop EDF (explored)
 - Raman + In-line + Drop EDF
 - In-line EDF + Drop EDF
- Results demonstrates that all the remote technologies can provide oSNR not lower that 22 dB matching the goal of 21.4 dB oSNR proposed.
- Analisys performed on additional noise contributions as RBS, Reflections, Down stream cancellation techniques and Gain Transients.

OSNR (worst – best)[dB]							
	URBAN	URBAN	RURAL	RURAL			
	0dBm	+10dBm	0dBm	+10dBm			
Drop EDF	38.3 - 39.5	39.8 - 40.0	36.6 - 39.3	39.5 - 40.0	Non- Resilience		
Drop EDF	27.4 - 27.6	27.7 - 28.9	28.0 - 28.4	28.3 - 29.8	Resilience		
Raman	36.1 - 41.8	39.3 - 43.8	36.5 - 51.4	42.3 - 50.0	Non- Resilience		
Raman	24.6 - 31.0	29.0 - 36.1	36.7 - 42.2	35.7 - 40.0	Resilience		
In-line	24.2 - 39.7	24.2 - 39.7	22.6 - 39.7	22.6 - 39.7	Non- Resilience		
In-line	21.9 - 39.7	21.9 - 39.7	23.0 - 39.7	23.0 - 39.7	Resilience		

Table 4.1. Summary of OSNR of the signals provided by the different amplification techniques.

The reported OSNR values in Table 4.1 have been obtained using the following total pump power consumptions shown in Table 4.11.

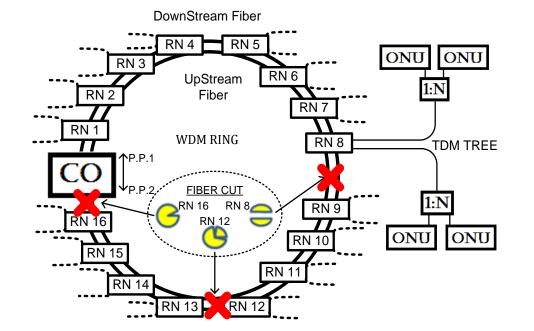
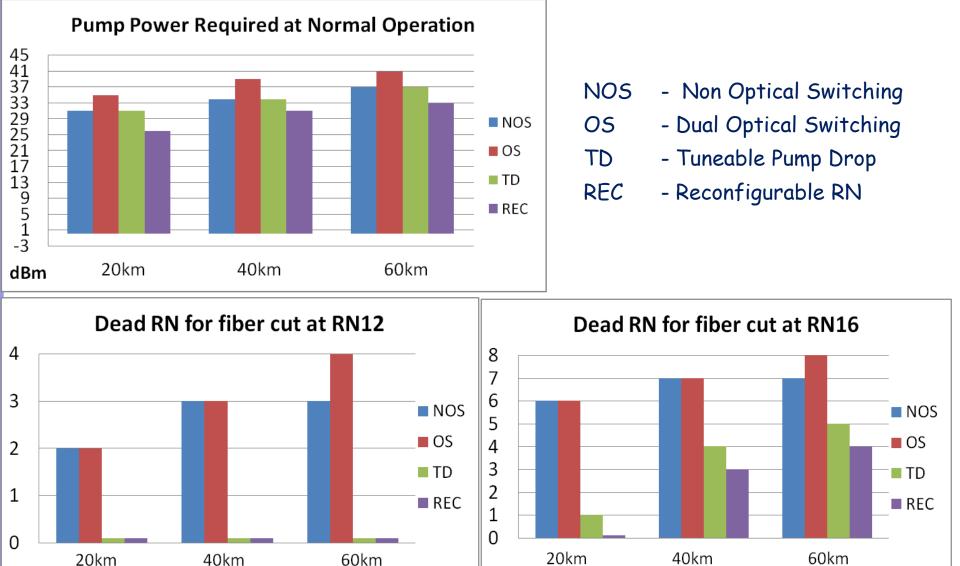
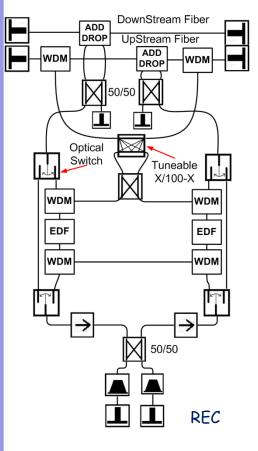

Total Pump Power required (East fiber-West fiber)[dBm]						
	URBAN	URBAN	RURAL	RURAL		
	odBm	+10dBm	0dBm	+10dBm		
Drop EDF	32.6 - 33.2	28.5 - 29.7	32.5 - 32.1	27.1 - 28.0	Non- Resilience	
Drop EDF	44	46.4	46.2	46.2	Resilience	
Extra Raman consumption (dB)	0.02 - 0.08	0.17 - 0.87	2.11 - <mark>8.42</mark>	3.26 - <mark>12.8</mark>	Non- Resilience	
Extra Raman consumption (dB)	0.02 - 0.09	0.17 - 1.02	2.11 - <mark>10.4</mark>	3.26 - <mark>14.7</mark>	Resilience	
In-line	28.0 (for DS) 24.6 (for US)	26.1	23.1 (for DS) 19.8 (for US)	22.0	Non- Resilience	
In-line	28.0 (for DS) 24.6 (for US)	26.1	23.1 (for DS) 19.8 (for US)	22.0	Resilience	

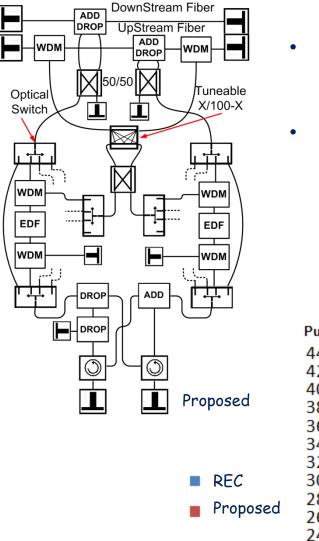
Table 4.II. Summary of pump power requirements of the different amplification techniques (for In-line, the pump power consumed by the first amplification stage has been considered).

NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)

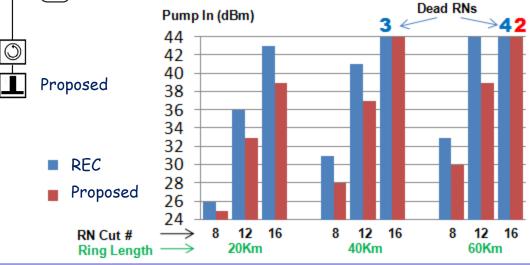

SARDANA - Resilience

- Comparison between the RN architectures:
 - Non Optical Switching
 - Dual Optical Switching
 - Tuneable Power Splitting
 - Reconfigurable RN
- ... for fiber cut at RN8, RN12, RN16
- System parameters
 - Ring Size of 20, 40 and 60Km
 - 16RN
 - Tree size of 2Km
 - 2 trees per RN
 - 32 users per tree
 - 100Mbit/s per user

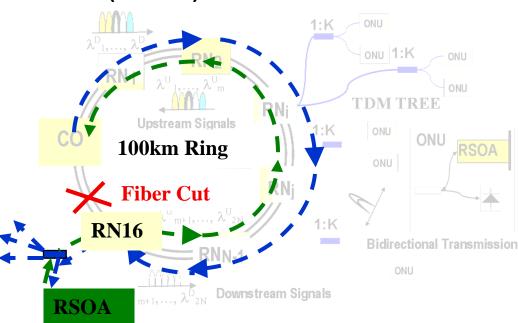


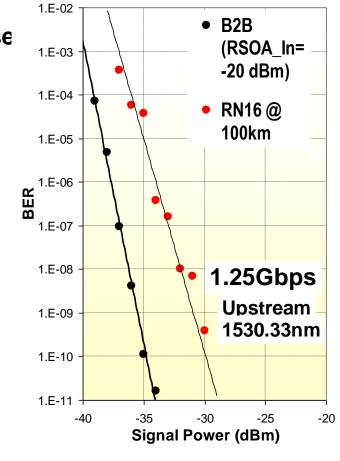


NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)


Remote Node Instituto de telecomunicações Remote Node Proposal 3 / Results

- Proposed RN allow extra resiliency and lower Pump Power consumed.
- But also extra costs due to the insertion of more 6 1x4 Optical switching, requiring more control power.


NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)


Transmission experiments: Upstream telecomunicações

1.25Gbps

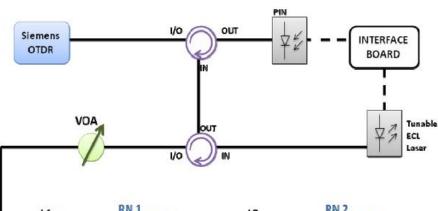
- Reaching 1024 ONUs along 100km in the worse ٠ conditions of fiber cut
- Thanks to: •
 - Power budget reduction, new RN design
 - Lower input signal required for this RSOA at 1.25G (-20dBm)

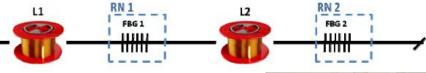
- Monitoring
- Upper layers detection
- OTDR (physical layer)

OTDR monitor in SARDANA

Trace in black: $\lambda = 1553 \text{ nm}$; $\lambda_{FBG1} = 1550.2 \text{ nm}$; $\lambda_{FBG2} =$ 1551.4 nm 80 km 1 km RN 1 RN 2 FBG 1 FBG 2 11111 11111 -0.00 dB -6.00 dB -12.00 dB -18.00 dB -24.00 dB -30.00 dB -36.00 dB 0.00 60.00 120.00 km Trace in black: $\lambda_{FBG1} = 1550.2$ nm; Trace in pink: $\lambda_{FBG2} = 1551.4$ nm 80 km 1 km RN 2 FBG 1 FBG 2 ------..... -0.00 dB -6.00 dB -12.00 dB -18.00 dB -24.00 dB WHA! -30.00 dB -36.00 dB

60.00


instituto de

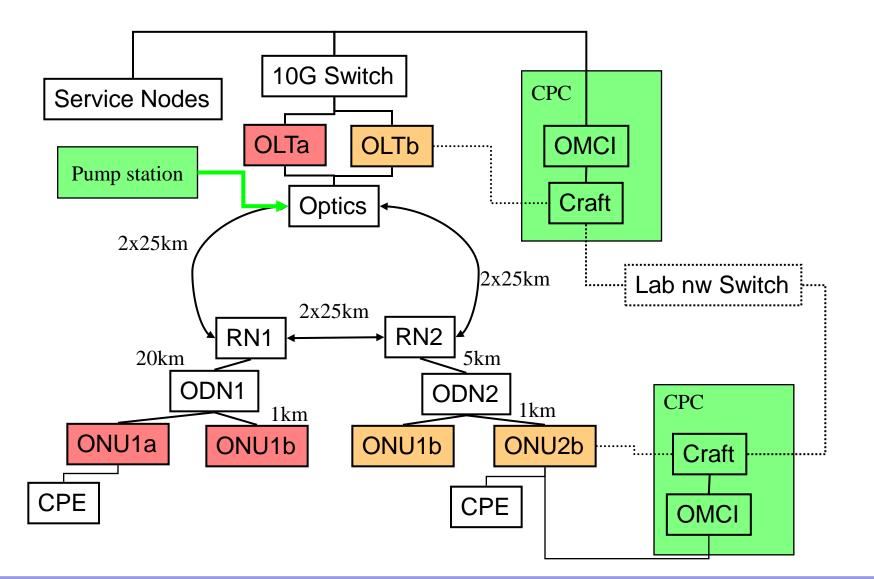

telecomunicações

0.00

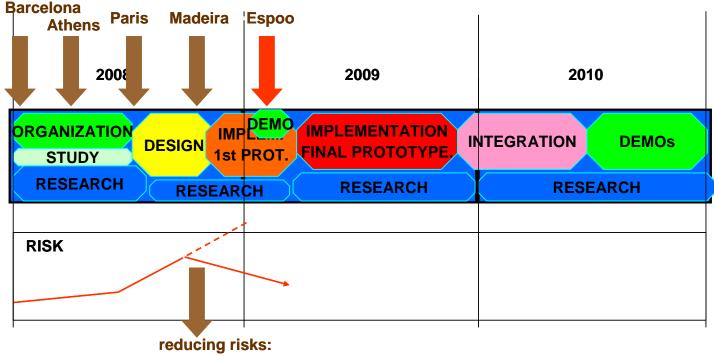
54

Experimental Setup

120.00 kπ NGON- Seminar 14° of April 2009 (ISCTE, Lisbon)


FFE/DFE Electronic compensation

- Experimental test using an FFE/DFE module with following characteristics:
 - Operation at 10Gb/s with 2 samples per symbol
 - Independent FFE (up to 5-taps) and FFE/DFE (up to 2-tap DFE) operation
 - Built-in Clock recovery
- Experimental activities targeted the following: (independently and in combination with WP-Sy):
 - 10Gb/s EML transmission distance improvement
 - 2.5Gb/s DMLs operated at 10Gb/s with FFE/DFE and off-set-filtering
 - CD compensation
 - SPM and non-linear effects
 - 10Gb/s DML with low ER and DFE/FFE at receiver (to be combined with properties of remodulation using RSOA)
 - Equalization of remodulated upstream signal from RSOA
 - Bidirectional transmission to examine effects in tree distribution fibre
- \rightarrow Results to be presented in upcoming deliverables and associated new publications


Demo setup - 2009

Project planning and status telecomunicações

construction of the first prototype...

- Prototype and test Phases of Sardana:
 - Current GPON-compatible 2.5G/1.25G
 - 10G/2.5G for Demo
 - 10G/10G with advanced tecniques.

- SARDANA project targets the ultimate extension of the limits of FTTH Passive Optical Networks, as a practical transparent approach to access&metro convergence.
 - Sardana Test-bed Demonstration in Espoo-Finland, with extended scalable reach, number of homes, bandwidth, passively scalable external plant and resiliency.
 - Sardana Field-Trial in 2010 in Lannion-France, with new broadband services.
- Network/system/subsystem/component design guidelines and prototypes.
- Contribution to
 - Regulatory Bodies on Broadband Access to citizens (multi-operator infrastructure sharing strategy).
 - International Standards on next-generation FTTH.

- One order-of-magnitude extension of current PON performances, aimed at overcoming the expected long term limitations of current internet capabilities, architecture and protocols.
- Smooth and increased scalability and backwards compatibility migration solution from currently deployed PONs.
- Establishment of **new intelligent monitoring and compensation** strategies to combat impairment and faults for a trusted robust PON.
- Implementation of the MAC, the Control and Management planes, to demonstrate basic resiliency, wavelength balancing and improved serviceaware traffic control.
- Economic effectiveness of the extended PON approach.
- **Demonstration** (at UPC, Helsinki Oy and ICT'2010) and field-trial (in Lannion) of the SARDANA network.
- Formal proposal for a technical solution of a efficient multi-operator shared broadband infrastructure as an input to international Recommendation and national NGA Regulatory bodies.
- SARDANA will result with **experience and IPR** that helps industry and research to develop a competitive advantage.