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The formal and empirical-generative perspectives of computation are demonstrated

to be inadequate to secure the goals of simulation in the social sciences. Simulation

does not resemble formal demonstrations or generative mechanisms that deduc-
tively explain how certain models are sufficient to generate emergent macrostruc-

tures of interest. The description of scientific practice implies additional epistemic
conceptions of scientific knowledge. Three kinds of knowledge that account for a

comprehensive description of the discipline were identified: formal, empirical and

intentional knowledge. The use of formal conceptions of computation for describing
simulation is refuted; the roles of programming languages according to intentional

accounts of computation are identified; and the roles of iconographic programming

languages and aesthetic machines in simulation are characterized. The roles that
simulation and intentional decision making may be able to play in a participative

information society are also discussed.

1. Introduction

The analysis of complex systems is being pursued with increasingly more
sophisticated information technologies. In particular, the area of computer
simulation has acquired a decisive role for analysing societies as complex
systems, leaving behind the history of simulation as a secondary method-
ology in the social sciences. The sources of analogy between agent-based

∗The title of this paper is inspired by James Fetzer’s article “Formal Verification: The
Very Idea”. See Ref. 1.
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technologies and social scientific models fomented an unprecedented inter-
disciplinary effort, which has been creating countless interfaces of research,
across the computer and social sciences.

Several reasons exist for conducting a philosophical analysis of this sci-
entific domain. In general, social science simulation has contributed to an
inter- and multi-disciplinary scientific praxis,a thereby establishing new al-
ternatives to traditional scientific methodologies. This should lead to the
elaboration of new philosophical perspectives about the rules of the game
as they are played in simulation.b Within the scientific community, the
existence of methodological aspects that deserve better analysis is recog-
nized. For some, the use of formal models, resulting from the computational
nature of simulation, has been considered not only an addition to the estab-
lished methods but the basis for the emergence of “proper social sciences”.c

For others, the classical theory of computation does not support an ade-
quate model of reality for simulation in the social sciences, and therefore
the formal perspective of computation is not enough.d At any rate, the
difficulties in constructing methodological perspectives on simulation raises
interesting questions about the kind of scientific knowledge that simulation
is providing.

Once the philosophy of simulation is analysed, it becomes clear that
most essays do not take into account methodological and philosophical as-
pects of computer science, but are grounded mostly on aspects of social
science. Among the diversity of perspectives that may be adopted, most
should lead to recognizing additional ways to understand the concepts of
computation and programming languages. However, few if any philosophi-
cal analyses in this field considered theoretical and practical limits of com-
putation, as well as its new approaching challenges, well understood. Specif-
ically, among the questions confronted by social science simulation is the
extent to which formal and empirical methodologies are sufficient to de-
scribe the goals and methods of the discipline. In this paper we claim that
they are not.

As we demonstrated in David et al. (2005)8, simulation reveals new
conceptions about the kind of scientific knowledge that computers provide.

aOn the interdisciplinary structure of the scientific community in agent-based social
simulation see Ref. 2.
bSee the introduction to the issue of JASSS on epistemological perspectives on simula-

tion, Ref. 3. See also Ref. 4.
cSee specifically Ref. 5. See also the debate in Ref. 6.
dSee Ref. 8.
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Meanwhile, the meaning of social simulation is strongly connected with
two traditional epistemic conceptions of scientific knowledge. The first
conception is the formal view of mathematical knowledge, reminiscent of the
computer science formal tradition and congruent with the idea of simulation
as numerical calculation. The second refers to the experimental character
of simulation, insofar as scientists run their programs in computers like an
experimental set-up. Programs, in both senses, are viewed as descriptions
of social theories or phenomena that, unlike most theories in the social
sciences, are viewed as formal mathematical models.

The conflation of the formal and the experimental perspectives of simu-
lation lead many scientists to pose simulation as a way of testing represen-
tations of social theories or phenomena that could, in principle, be deduced
from general principles. This is based on three tacit methodological as-
sumptions that draw on the formal tradition of classical computational
theory, which we will challenge throughout this article:

Assumption 1. The process of executing a program in a computer can
be formally modelled, and thus understood as an automatic process of for-
mal inference. This position was explicitly advocated by Epstein (1999)10,
drawing directly on the Turing-Church thesis.e

Assumption 2. The sensitivity of complex models to initial condi-
tions does not permit deducing its simulated results from general princi-
ples, although it would be possible to do it in principle. Casti, for instance,
described this conception in a very explicit way:

“In principle, one could trace all the statements in the program repre-
senting the simulation and discover exactly why things unfolded the way
they did (. . . ) it just cant be done in practice.” (Casti, 2001, p.14, our
emphasis)11

Assumption 3. The experimental character of simulation in the so-
cial sciences can draw on the experimental character of simulation in the
natural sciences.f Insofar as the sensitivity of general complex models ex-
plains the inability to deduce its simulated results from general principles,
the sensitivity of social-scientific models explains similarly the inability to
deduce its simulated results from general principles. Casti, for instance,
tacitly conflated the present and the previous assumptions as follows:

eFor an introduction to classic computer theory, also known as the Church-Turing thesis,
see e.g. Ref. 9.
fFor a comprehensive critic see Ref. 8; see also Ref. 12.
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“For the first time in history we are in a position to do bona fide
laboratory experiments on these kind of complex systems. (. . . )
We can use these surrogates as laboratories for carrying out the
experiments needed to be able to construct viable theories of com-
plex physical, social, biological and behavioural processes.” (Casti,
1997, p.35, our emphasis)13

Recently, a number of essays debated epistemological perspectives on
social science simulation.g Either by viewing simulation as a process of
imitation12, stylized facts 14, or intentional adequacy between programs
and theory8, the tendency is to emphasize the interpretative character of
social science in simulation, notwithstanding its application as a useful
methodology for approaching complexity. The essay presented by David
et al.8, in particular, advocates the perspective of intentional computa-
tion as the approach able to comprehensibly reflect the multiparadigmatic
character of social science in terms of agent-based computational social sci-
ence. Conversely, essays presented by Moss and Edmonds15 or Boero and
Squazonni16 argue that simulation provides the social sciences with a pow-
erful instrument to generate empirical evidence, and thereby, contribute to
better social sciences. Whereas these two trends may not be contradictory,
the formal character of computer science pervades the scientific culture of
simulation, as well as most of its methodological arguments. However, the
formal perspective does not seem to be compatible with any such views.

In this chapter the classical account of computation is demonstrated to
be inadequate to secure the goals of simulation in the social sciences. Sim-
ulation does not resemble formal deductive demonstrations or generative
mechanisms that explain how certain agent-based models are sufficient to
generate emergent macrostructures of interest. The justification of results
implies additional epistemic conceptions of scientific knowledge, which are
tacitly being used in the discipline. Three kinds of knowledge that account
for a comprehensive description of the discipline from an epistemological
point of view are identified: formal, empirical and intentional knowledge.
Intentional knowledge should be considered an outcome of an experimental
exercise, albeit not empirical, acquired within a context of limited consen-
sus.

The structure of our argument in this chapter is composed of two parts.
In the first part the formal and generative perspectives of computation in

gSee the introduction to the issue of JASSS on epistemological perspectives on simula-
tion, Ref. 3.
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literature are recalled, proceeding afterwards to refuting the use of such con-
ceptions for describing the scientific practice of simulation. In the second
part the role of programming languages in simulation, according to inten-
tional accounts of computation, is discussed. Two types of programs and
programming languages in simulation are identified: Programs as text and
programs as icons; and languages as abstract machines and languages as
aesthetic machines. The use of abstract languages confirms that the method
of simulation incorporates formal and empirical methodologies. The use of
aesthetic languages demonstrated that it depends fundamentally on inten-
tional methodologies. The roles that intentional decision making may play
in a participative information society are also discussed.

2. An Ontological Confusion

Conventional methodologies of computer science model the mechanism of
executing a program in a computer like a process of formal inference. In
complexity sciences, the process of running a program was described not
only as an automatic inference procedure but as a formal deductive proce-
dure itself. The computer is seen as a mechanism of formal calculus, where
programs represent mathematical functions that map inputs into outputs.
The calculus can be modelled in several ways, one of which ascribes the
computer the capacity to prove first-order theorems according to a fixed
vocabulary. Considerations of brevity and simplicity lead us to call this tra-
dition the FDE argument, as per ‘Formal Deduction through Execution’.
Notwithstanding, our goal is quite the opposite, namely to demonstrate
that simulation shall not be legitimized under the presumption of resulting
from a calculus of formal inference. Additional conceptions of knowledge
are needed.

2.1. Against Generative Sufficiency of Growing Artificial

Societies From the Bottom Up

The relationship of simulation with the formal perspective of computation
was rigorously advocated by Epstein (1999, p.44)10 in his account of “gen-
erative social science”, where he writes:h

“ . . . if one accepts the Church-Turing thesis then every computa-
tion — including every agent-based computation — can be exe-
cuted by a suitable register machine. It is then a theorem of logic

hThe concept of generative social science was also adopted in Ref. 17.
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and computability that every program can be simulated by a first-
order language.”

The point is the following:

“ . . . for every computation there is a corresponding logical deduc-
tion, and this holds even when the computation involves ‘stochastic’
features since, on a computer, these are produced by deterministic
pseudo-random number generation. Even if one conducts a statis-
tical analysis over some distribution of runs, each run is itself a
deduction.” (Epstein, 1999, p.44)10

The methodological point of social science simulation would be to gener-
ate observed social phenomena in computers and thus deductively explain
the social phenomena, insofar as there is an intellectual tradition upon
which “we deduce propositions expressing observations from other more
general propositions”.i Accordingly, scientists “seek to explain macroscopic
social phenomena by generating it in an agent-based computational model”.
Moreover, “in that event, we can claim that they [the explanations] are
strictly deductive.” (p.43, our emphasis and brackets)10

We may state Epsteins argument of generative sufficiency as follows:

The Generative Sufficiency Argument. Agent-based models pro-
vide formal demonstrations that a given microspecification is a sufficient
condition, albeit not a necessary condition, to generate a macrostructure
of interest.

And this leads Epstein to conclude:
“From an epistemological stand point, generative social science, while

empirical, is not inductive, at least as that term is typically used in the
social sciences.” (1999, p.43)10

2.2. ‘Generative’ from a Philosophy of Computer Science

Perspective

The arguments of Epstein can be analyzed from the perspective of the phi-
losophy of computer science. The term ‘formal’ is ubiquitous in computer
science. Smith19, for instance, has acknowledged the ambiguity of the term:

iEpstein‘s account of scientific explanation seems to be inspired by the work of classical
empiricists, such as in Ref. 18.
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“People may believe that developing an idea means formalizing it,
and that programming languages are formal languages, and that
theorem provers operate on formal axioms — but few write ‘formal’
in formal axioms or daily equations. Moreover, a raft of different
meanings and connotations lie just below the surface. Far from
hurting, this apparent ambiguity has helped to cement popular
consensus. Freed of the need to be strictly defined, formality has
been able to serve as a lightning rod for a cluster of ontological
assumptions, methodological commitments, and social and histor-
ical biases. Because it is tacit, goes deep, has historical roots, and
permeates practice, formality has been an ideal foil, over the years,
with which to investigate computation. Almost a dozen different
readings of ‘formal’ can be gleaned from informal usage: precise,
abstract, mathematical, a-contextual, digital, explicit, syntactic,
non-semantic, etc.”

In a Church-Turing theoretic account, the meaning of ‘formal’ appears
connected to the antisemantical reading mentioned above. That is, the idea
that a symbolic structure is formal just in case it is manipulated indepen-
dently of its semantics, in which it is assumed that a theorem is derived by
an automatic inference regimen.

To some extent, the pervasive use of the term ‘formal’ arises from con-
flating the terms ‘program computation’ and ‘program execution’ into one
single meaning, conveying the same ontological status to two fundamentally
distinct processes.7 The concept of ‘abstract machine’ in classical compu-
tation is conflated with the concept of ‘physical machine’ in software en-
gineering. The observed behaviour of a program executing in a computer,
which should be the subject of research in the first place, gives way to
a computation that is, in essence, a formal model or a theory itself. As
Epstein himself states (1999, p.44)10, “each run is itself a deduction” —
the actual execution of a program in a physical machine is a theory or a
computation in itself.

It would be reasonable to question whether the idea of Epstein is not
to illustrate anything more than an ideal perspective of computation in
real computers. Yet, his efforts are not limited to illustrating that sim-
ulation implies deductive and generative conceptions of scientific research
but that simulation implies a new kind of scientific empirical research. The
point of simulation, in such a sense, is to provide agent-based specifications
for which the corresponding program execution should generate patterns
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that match empirical data — for instance, to implement in a computer an
agent-based archaeological model that succeeds in generating behaviours
that match empirical data and thus explain why the Kayenta Anasazi pop-
ulation of Long House Valleyj vanished at some point from the valley (1999,
p.44)10. The role of computer science, therefore, is one of formal inference,
whereas the role of social science simulation is to use computers to generate
behaviours that should match social scientific data.

Apart from the arguments of Epstein, there is wide evidence confirm-
ing a tacit association of simulation with formal deduction, for instance, by
suggesting the high levels of control and objectivity that scientists attribute
to simulation results. The claim of Casti11 that it is possible to trace all
statements in the simulation is obvious evidence. Prietula et al.20 advocate
that: “computational models are generally less noisy, easier to control, more
flexible, more objective”. Sawyer explains: “the contributions of artificial
societies to sociological theory will be primarily to theories that are char-
acterized by logical rigor (. . . ), which allow precise and logical deductions
from abstract principles to empirical hypotheses (. . . ) Artificial societies
resemble axiomatic theory in the sense that their propositions are explic-
itly stated in the form of algorithms or program code and valid derivations
may be drawn systematically by running the program” (2003, p.332)21. For
Axelrod, one of the advantages of simulation is that “there are no messy
problems of missing data or uncontrolled variables as there are in experi-
mental or observational studies” (1997, p.27)22.

The most cited sentence of Axelrod, describing simulation as a bridge
between induction and deduction, is actually not far from the idea. Whereas
it is claimed that simulated data must be analysed inductively, it is sug-
gested that the data are a necessarily valid consequence of the rules speci-
fied:

“Simulation is a third way of doing science. Like deduction, it
starts with a set of explicit assumptions. But unlike deduction, it
does not prove theorems. Instead, a simulation generates data that
can be analyzed inductively. Unlike typical induction, however, the
simulated data comes from a rigorously specified set of rules rather
than direct measurement of the real world. While induction can
be used to find patterns in data, and deduction can be used to find
consequences of assumptions, simulation modelling can be used as

jA small region in northeastern Arizona.
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an aid to intuition.” (Axelrod, 1997, p.25)22

However, insofar as the data can be analysed inductively, it seems dif-
ficult to conceive how it was generated in the first place without “direct
measurement of the real world”. Computers in this sense do not belong to
the “real” world. That is to say, the tacit methodological assumption of
social science simulation would propose the same ontological status to both
a program execution in a physical machine and a formal computation in an
abstract machine. We shall call this assumption the FDE argument, as per
Formal Deduction through Execution:

The Argument of Formal Deduction through Execution. It is
based on three methodological beliefs, which we will show to be contradic-
tory with one another:

A) The mapping of classical computer theory into the logic of the
method of social science simulation. B) The conflation of the terms ‘com-
putation’ and ‘execution’. C) The experimental character of simulation,
upon which an unexpected result can be a reflection of a mistake in the im-
plementation (bug) or a surprising consequence of the program itself (see
e.g. Axelrod, 1997, p.27)22.

2.3. Refutation of Formal Deduction through Execution

In this research, it is claimed that the role of computation in social sim-
ulation is not one of formal deduction. The goal is to refute the FDE
argument. From a scientific-philosophical perspective our goal may seem
somehow trivial. However, we demonstrated that the formal perspective
of computer science is recalcitrant within social science simulation. More-
over, the objection to the FDE argument suggests yet another objection
to current philosophical thinking in the literature: The objection to char-
acterizing simulation as a basic and alternative epistemic conception to
deduction or induction.

The objection to the FDE argument parallels an old, but still om-
nipresent, debate in computer science, centered around the merits of the
so-called “formal verification of programs”. The merits of formal methods
for verifying programs became particularly controversial by the end of the
Eighties and in the beginning of the Nineties after James Fetzer published
an eloquent article in the ‘Communications of the ACM’1,23. On one side
of the debate were gathered those who considered that computer program-
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ming was reducible to mathematics — inspired by Hoare or Dijkstrak —
and the other side was composed of those who saw it as applied mathemat-
ics or empirical science. The claim of Fetzer was that the formal verification
project carried misleading ideas. The seminal work of Hoare is an obvious
example:

“Computer programming is an exact science in that all the prop-
erties of a program and all of the consequences of executing it in
any given environment can, in principle, be found out from the
text of the program itself by means of purely deductive reasoning.”
(Hoare, 1969, p.576, our emphasis)25

These ideas often turned out to be misleading. For instance, it was often
claimed that the intended behaviours of computers could be completely
specified and verified before the corresponding programs were executed on
specific computers, by means of purely formal methods. Computer science
would be viewed as pure mathematics rather than as applied mathematics
or empirical science.

Fetzer‘s philosophical refutation of the formal verification project con-
sisted of distinguishing two kinds of programs: those that are and those that
are not in a suitable form to be compiled and executed in a machine. The
difference between the programs is that the former is verified by reference to
abstract machines, whereas the latter require the existence of compilers, in-
terpreters and target machines. Compilers, interpreters and processors are
properly characterized according to specific target physical machines. Inso-
far as a program in an abstract machine does not possess any significance
for the performance of a target machine, the performance of that program
can be verified formally and conclusively. Conversely, to the extent that the
performance of a program possesses significance for the performance of a
target machine, that program cannot be conclusively verified a priori. The
program must be verified empirically by means of program testing. Hence,
the formal verification project is not viable.l Program testing should be
the crucial technique to ascertain the proper behaviour of programs and
computers, notwithstanding the use of formal methods during the stages of
analysis and design.

Our goal is to informally reduce the FDE argument in social science sim-
ulation to the formal verification project in computer science. Consider the

kSee e.g. Ref. 24.
lFor more details see Ref. 1 or 23.
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formal verification project according to its most radical terms. The intent
would be to create formal methodologies that could guarantee that a given
specification would correspond to the behaviour of a program executing in
a computer. That is, to find deductive procedures to verify conclusively
the correctness of a program P in relation to a specification F : I → O,
in order to guarantee that the execution of P with inputs I would result
exactly into the specified outputs O. The following argument reduces FDE
to the formal verification project.

The Argument of FDE Refutation. Consider a specification F1 :
I1 → O1 and a program P1 as text that can be read, edited, printed.
The computation of P1 with inputs I1 is denoted by P1(I1) = O1 and
the execution of P1 after implementation is denoted by P1→(I1) ≈ O1.
Suppose that P1(I1) = O1, according to a proof of partial correctness.m

Suppose, however, that P1→(I1) ≈ O2, that is the computation and the
execution of P1 leads to different results, compatible with assumptions B
and C in the FDE argument. However, according to assumptions A and B in
the FDE argument, there is a specification F2 : I1→ O2 and some program
P2 such that the computation with input I1 leads to O2, i.e. P2(I1) = O2.
So, a specification F2 : I1 → O2 exists such that the execution of P1
and the computation of P2 satisfy F2. The formal verification project is
thus possible: the behaviour of P1 execution (as well as P2 computation)
necessarily corresponds to the specification F2 : I1→ O2.

In short, from a methodological point of view, the FDE argument can-
not be sustained. At the very least it is misleading. Even though it does
not suggest that both the computation and the execution of P1 necessar-
ily give the same outputs, which would prima-facie instantiate the formal
verification project, it may suggest that the execution of P1 necessarily cor-
responds to a formal computation of some program P2, which is a method-
ological absurdity. The formal perspective of computation is not enough to
support an adequate model of reality for simulation in the social sciences.
The logic of simulation implies distinct types of program verifications that
reflect epistemological distinctions in the kind of knowledge one can have
about programs. One obvious type of knowledge is empirical knowledge
obtained through program testing. Another one is intentional knowledge,8

which is discussed in subsequent sections.

mOn proofs of partial correctness see e.g. Ref. 25.
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A final comment emerges regarding the perspective of Axelrod22 that
poses simulation as a contrast to both induction and deduction, which is
after all not far from the formal perspective of Espstein. Whereas Axelrod
defines induction as the “discovery of patterns in empirical data”, deduction
is understood as the specification of “a set of axioms and proving conse-
quences that can be derived from those assumptions” (1997, p.24)22. Yet,
there is no reason for not viewing deduction as a kind of empirical enquiry.
Popper26, as many other ‘deductivists’ in the philosophy of science, would
say that there is no such thing as induction.

Figure 1. A theory square.

Figure 2. A second theory square.

Consider Figure 1. The theory square represents a traditional epistemic
question in the philosophy of science with respect to empirical science:
Are correlations between natural properties enquired inductively or deduc-
tively? Likewise, it is equally fair to use a theory square in relation to the
behaviour of a program executing in a computer, just like in Figure 2. In-
deed, whether the enquiry may be inductive, deductive, or even abductive
depends on the relevant methodological conception of scientific enquiry,
which is by no means a specific dilemma of simulation. To define the epis-
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temic specificities of simulation based on such contrast does not seem to be
significantly informative to the point in question.

3. The Role of Programming Languages

An informative way to analyse the epistemic status of simulation is to ex-
amine how simulations are programmed. Program implementation plays
a fundamental part in constructing a simulation. The role of intentional
methodologies becomes crucial once it is realised that, rather than one kind
of program and programming language, two kinds of program and program-
ming language are used in the implementation of a simulation. Simulations
are constructed by means of successive language translators, from program
to program, by using simulation platforms, compilers and interpreters. In
computer science we usually view a programming language as an abstract
machine and a program as a textual and static entity, which may be read,
edited, printed. However, in social simulation we have identified yet another
type of programming language and kind of program, which involve the use
of intentional knowledge. At least two kinds of programming languages are
used in the process of implementing simulations, iconographic and textual
programming languages.

Iconographic Programming Languages. Iconographic program-
ming languages consist of a set of subjective rules that model the behaviour
of an aesthetic machine. A subjective model, eventually associated with a
specific domain composed of organisational or aesthetic abstractions, such
as groups of agents, grids, movement, constraints, roles, levels, messages,
societies, or specific behaviours, ‘segregation rules’, ‘sexual rules’ and ‘ge-
netic crossing’, ‘culture’, ‘race’, ‘influence’, ‘friendship’, ‘innovation’, ‘state
nations’ or ‘political actors’. For instance, the CORMAS platform,n as well
as the Swarm simulation system,o support aesthetic human-machine inter-
faces to specify interactions between individuals and groups sharing renew-
able natural resources. The commands in the programming languages are
icons represented on the screen rather than structures in textual languages.
A program is a set of selected icons with no definitive explicit order. The
user selects icons with the mouse, after which an automatic code generator
transforms icons into sections of code in high-level programming languages,
such as SmallTalk or Objective C. However, the first order logics of classic

nCommon-pool Resources and Multi-Agent Systems, see http://cormas.cirad.fr.
oSee http://www.swarm.org.
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computer theory can hardly describe these transformations. Moreover, the
sections of code are later linked in some arbitrary way by the user. The
specific mapping from icon-level language to high-level language is subjec-
tive, domain specific and validated according to a limited level of consensus.
In the case of participative-based simulation, stakeholders may be involved
in the specification of iconographic programs, but hardly in the semantic
process of mapping iconographic programs to high-level programs.

Textual Programming Languages. Textual programming languages
include the usual high-level and low-level languages. A high-level language,
as defined by Fetzer27, is a set of abstract rules that model the behaviour of
an abstract machine. High-level languages have clear formal semantics, and
contrary to icon-level languages, the meaning of their commands must not
be subjective. The advantage of programming with high-level languages,
such as Java or Objective C, is that there is a one-to-many relationship be-
tween the commands that can be written in a high-level language and the
counterpart operations that are performed by a machine executing them,
on the basis of their translation into machine language. The function of
interpreters and compilers is to create a causal mechanism so that programs
written in high-level languages may be mapped to low-level languages and
later executed by target machines whose operations are causally affected
by machine code, which usually consists of sequences of zeros and ones.27

A low-level language is a set of abstract rules that model the behaviour of
abstract or target machines. Typically, the lowest-level language program-
mers use is Assembly language, where there is more or less a one-to-one cor-
respondence between commands and operations. Low-level programming
languages therefore play two roles: First, that of an abstract machine, in a
way analogous to high-level languages but where, second, unlike high-level
languages, there is a one-to-one causal relationship between the commands
that occur within a programming language and the operations performed
by a target machine. The programming language stands for a virtual ma-
chine that may be understood as an abstract entity, which may or may not
be causally connected with a target machine.

The distinction between programs as text and programs as icons, as well
as between abstract and aesthetic machines, reveals the intentional charac-
ter of social simulation methodologies. Whereas the consistency between
two different abstract machines can be specified formally and verified em-
pirically, the consistency between abstract and aesthetic machines must be
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verified intentionally. Indeed, the modelling of target machines by means
of abstract machines can be defined according to formal logic, drawing on
classic computer theory. Hence, the relative consistency between the high-
level and low-level abstract machines can be demonstrated formally, as well
as tested empirically against the observed behaviour of the program. More-
over, insofar as most high-level programming languages stand for abstract
machines rather than physical machines, we can say that the process of
implementing a high-level program involves the construction of a sequence
of embedded models that are causally connected to a target machine.

In contrast, whereas abstract machines are specified with well-defined
formal semantics, the meaning of iconographic languages and aesthetic ma-
chines is negotiated intentionally by the members of the team implementing
the simulation, as well as by the stakeholders involved. Since iconographic
languages must be mapped into high-level, and ultimately into low-level
languages, it becomes clear that the process of implementing icon-level
programs involves the construction of a sequence of embedded models con-
nected intentionally to a target machine. The target machine is modelled
intentionally according to a limited level of consensus and tested experimen-
tally, albeit not empirically, against the observed behaviour of the icon-level
program.

From this point of view, the implementation of a program can be viewed
as the action of embedding models within models, where the notion of em-
bedding may be envisioned as an intentional, causal or logical relation. In
Figure 3, Fetzer’s diagram of language embedding27 is expanded with icon-
level programs and aesthetic machines. The thin arrows represent a possible
relation between programs and machines represented by programming lan-
guages. The thick arrow represents an actual relation between a low-level
program and a target machine. The series of three black dots stands for
the possible existence of automatic code generators, compilers and inter-
preters that effect some causal connection between programs/machines at
different levels of embedding. In addition, the series of unfilled dots stands
for the existence of implementation teams and stakeholders that exercise
intentional connections between abstract and aesthetic programs/machines
at different levels, according to a limited level of consensus.

The use of iconographic programming languages demonstrates that the
logic of simulation incorporates formal and empirical methods, but largely
surpasses the use of formal and empirical methodologies. The results of
a simulation are outcomes of experimental set-ups, but the results of the
experiments can hardly be represented by material conditions of necessity
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Figure 3. Programs and languages as models — an extension to the diagram of Fetzer

with icon-level programs and aesthetic machines.

relating facts about the objective behaviours of the program. The results
are appropriately characterized by conditions of intentionality that relate
aesthetic components in the program, negotiated according to a limited
level of consensus.

4. A Different Idea of Simulation

We shall recall the traditional assumptions of simulation in the social
sciences, presented in the introduction, which we have been challenging
throughout this article. Firstly, whereas it is true that the process of ex-
ecuting a program can be modelled according to a mechanism of formal
inference, it does not seem to be significantly relevant to the methodology
of social science simulation. Secondly, whereas sensitivity to initial con-
ditions is an important issue in the social sciences, it is not the primary
reason explaining the inability to deduce simulation results from general
principles, at least from a technical point of view.

A tremendous semantic gap exists between the formal-empirical and the
intentional perspective of computation, both of which are used to interpret
the behaviour of simulations. The misleading assumption of generative
social science is that both formal and intentional representations can be
legitimised deductively, insofar as the process of program execution can
be understood as a formal deductive mechanism. This reasoning is unsus-
tainable. Firstly, the vocabularies of the low-level abstract machine (e.g.
memory registers, bit logical operations), as well as the vocabularies of the
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high-level machine (e.g. complex data structures, objects, graphics), are
not identical to the vocabularies of the icon-level machine (e.g. agents,
grid, movement, culture, segregation rules). The parts that those vocabu-
laries designate in the world are not the same; from a strict formal point of
view the consistency between machines is incommensurable. Secondly, al-
though the consistency between low-level and high-level abstract machines
can be verified empirically, the consistency between abstract and aesthetic
machines must be verified intentionally. But unlike the process of empirical
adequacy, no formal computational theory is available to justify the process
of intentional adequacy.p

The characterization of simulation as a research practice implies ad-
ditional epistemic conceptions of scientific knowledge that are being used
tacitly in the discipline. There are at least three different kinds of knowl-
edge that can be acquired from computer simulation: formal, empirical
and intentional knowledge. Intentional knowledge should be considered an
outcome of an experimental exercise, albeit not empirical, acquired within
a context of limited consensus. Social science simulation, like the social
sciences, is interpretative and diverse theoretically and methodologically.
To imagine that simulation could integrate the archipelago of the social
sciences, at least as far as that may depend on the establishing of wide
consensuses, like those found in the natural sciences, would be a mistake.
The conditions for the acceptance of a simulation depend on the particular
theoretical-methodological context of the social scientist, can be interpreta-
tive and subjective, and may depend on the socioeconomic and sociocultural
context. The perspective of intentional computation seems to be the one
able to reflect the multiparadigmatic character of social science into social
science simulation.

Finally, the observation that social science simulation is multiparadig-
matic demonstrates the need for participative contexts. As a growing in-
formation technology, simulation is being used to assess concrete socioe-
conomic and environmental/ecological problems. Simulation is a useful
methodology to approximate scientists and stakeholders. However, only
within a specific interpretative context can a specification or a program be
considered as a set of sufficient conditions to explain the observed behaviour

pMoreover, as we mentioned before, even if we ought to stay on the empirical plan
(which is not the case), whether the epistemic conception of inquiring the behaviour of
computers could be an inductivist or a deductivist one that would be by no means a

specific dilemma of simulation.
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of a simulation. Indeed, from a sociological perspective, simulation should
help us pose the process of science as critical thinking in a democratic
context.
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